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A B S T R A C T

For many important problems it is essential to be able to accurately quantify the statistics
of extremes for specific quantities of interest, such as extreme atmospheric weather events or
ocean-related quantities. While there are many classical approaches to perform such modeling
tasks, recent interest has been increasing in the usage of generative models trained on available
data. Despite the sporadic success of such methods, it is not clear for what systems or datasets a
system-agnostic generative AI tool is capable of generating previously ‘unseen’ extreme events
in a manner that accurately extrapolates the tails for the observable of interest. Here, we
propose an apriori criterion, which based on the geometry of the training dataset, it can predict
whether a generative AI tool will be able to extrapolate the tails, i.e. generate previously unseen
extreme events. The idea is to quantify whether existing extreme events lie in the interior of
the dataset or its boundary. In the former case it is shown that generative AI tools can work in
an ‘interpolation’ mode and generate new extreme events. On the other hand, if the topology
of the dataset is such that extremes live in the boundary of the domain then the generative AI
algorithm needs to operate in an extrapolation mode which does not lead to accurate results. We
illustrate our findings on a specific class of Diffusion Models (DMs) called Denoising Diffusion
Probabilistic Models (DDPMs) and we test on three datasets, a simple on-hyperball dataset
following a Weibull distribution for the radii of the data points of dimensionality 2⋅103, a dataset
sampled from the so-called Majda–McLaughlin–Tabak Wave Model (MMT), of dimensionality
8.1 ⋅ 103 and a dataset consisting of Lagrangian turbulence trajectories, of dimensionality 2 ⋅ 103.

1. Introduction

For a wide range of problems in engineering and science it is essential to be able to accurately quantify the extreme event
statistics of specific quantities of interest. For example, in the area of ocean engineering, the appearance of rogue waves, which
are uncharacteristically large waves for the given sea state with crest-to-trough heights exceeding two times the significant wave
height [1–5], is a phenomenon whose precise statistical modeling is of fundamental importance as these waves can have catastrophic
consequences on ships and other structures at sea [6–8].

There are multiple classical approaches for such modeling tasks, one of which is the employment of copulas [9–11], which are
based on Sklar’s theorem [12] and are able to identify the dependence between different univariate marginals. Another approach is
multivariate exceedance models [13], which differ to copulas in that they learn the conditional model to identify the dependence
structure between marginals, whereas the performance of copulas is based on choosing the appropriate copula family [14].

Recently, interest in using machinery imported from the area of unsupervised machine learning for the modeling of systems
exhibiting extreme events is increasing [14–16]. Promising is the use of Generative Adversarial Networks (GANs) [17,18], where
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there are examples which are able to generate extremes of the desirable severity for rainfall phenomena over the United States [19].
We turn our focus on a different class of generative models, the so-called Diffusion Models, which are also a promising candidate with
the appearance of models such as SwinRDM [20], a data-driven super-resolution weather forecasting model and FuXi-Extreme [16],
another weather forecasting model optimized for the prediction of extreme surface variables. However, it is not clear under what
conditions such unsupervised learning models are expected to work.

In this study we propose an a priori criterion, based on characteristics of the training dataset, for the efficacy of DDPMs to extend
the tails of the training dataset, capturing the pertinent extreme statistics. In Section 2, we provide some preliminaries on the specific
lass of DMs that we consider as well as some background on the three datasets that we test our criterion on. In Section 3, we

provide the criterion definition and details on its implementation algorithm. Finally in Section 5 we provide the key results of this
study which are in support of the validity of the proposed criterion before we provide some concluding remarks in Section 6.

2. Background

Here we provide a brief overview of the diffusion model framework that has been used for this study, while for more details,
the reader is referred to [15,21,22]. Let 𝐕 ∼ 𝑓𝐕 be a random variable where 𝑓𝐕 is the underlying probability density of interest. A
diffusion model trained on a dataset {𝐯𝛼 , 𝛼 ∈ 𝐼} sampled according to 𝑓𝐕, learns a random mapping 𝑝(⋅)1, such that for 𝐙 ∼  (𝟎, 𝐈),
(𝐙) ∼ 𝑓𝐕, thus allowing for the generation of samples on 𝑓𝐕 through sampling  (𝟎, 𝐈).

Choosing 𝑛 diffusion steps and a real sequence 𝛽𝑖, define a sequence of random variables 𝐕𝑖 through their conditional PDFs,2
as,

𝑓𝐕𝑖|𝐕𝑖−1 (⋅|𝐯𝑖−1) =  (
√

1 − 𝛽𝑖𝐯𝑖−1, 𝛽𝑖𝐈), wher e 𝐕 ≡ 𝐕0, 𝑖 = 1,… , 𝑛 (1)

where the process of generating samples in 𝑓𝐕𝑖|𝐕𝑖−1 from an initial sample 𝐯0 sampled on 𝑓𝐕, is called the forward diffusion
process. Notice that all variables 𝐕𝑖 except 𝐕0 follow a multivariate normal distribution. Now, for 𝐕𝑖 defined through (1), and
̄ 𝑖 =

∏𝑖
𝑗=0(1 − 𝛽𝑗 ), it can be shown that,

𝑓𝐕𝑛|𝐕0
(⋅|𝐯0) =  (

√

𝛼̄𝑛𝐯0, (1 − 𝛼̄𝑛)𝐈).

Letting 𝐕𝑖|𝐯0 be the random variable with PDF 𝑓𝐕𝑖|𝐕0
(⋅|𝐯0), we can then write

𝐕𝑖|𝐯0 =
√

𝛼̄𝑖𝐯0 +
√

(1 − 𝛼̄𝑖)𝝐 (2)

where 𝝐 ∼  (𝟎, 𝐈).
Next, the goal is for every 𝑖 and 𝐯 to learn the reverse conditional distribution 𝑓𝐕𝑖|𝐕𝑖+1 (⋅|𝐯), which permits the construction of an

ppropriate reverse process 𝑝(⋅). Specifically, for 𝐕𝑖 as in (1), let be given 𝑓𝐕𝑖|𝐕𝑖+1 (⋅|𝐯) for all 𝑖 ∈ {0,… , 𝑛− 1} and all 𝐯. Then define
𝑝(𝐯) by first sampling 𝑓𝐕𝑛−1|𝐕𝑛 (⋅|𝐯) to retrieve 𝐯𝑛−1. Then repeat for 𝑓𝐕𝑛−2|𝐕𝑛−1 (⋅|𝐯𝑛−1) to retrieve 𝐯𝑛−2 and so on, until 𝐯0, which is
efined as the output of the reverse diffusion process 𝑝(⋅). It is then the case that 𝑝(𝐕𝑛) ∼ 𝑓𝐕0

. It can also be shown that for small 𝛽𝑛,
𝐕𝑖+1|𝐕𝑖 will have a similar form to 𝑓𝐕𝑖|𝐕𝑖+1 [22]. That is, 𝑓𝐕𝑖+1|𝐕𝑖 will approximately follow a Gaussian distribution, which implies
hat a diffusion model with parameters 𝜃 needs only to learn the mean 𝜇𝜃(𝑖, 𝐯) and covariance matrix 𝛴𝜃(𝑖, 𝐯) for all 𝑖 and 𝐯. To
roceed, we denote with 𝑔 the learned distributions,

𝑔𝐕𝑖|𝐕𝑖+1 (⋅|𝐯) =  (𝜇𝜃(𝑖, 𝐯), 𝛴𝜃(𝑖, 𝐯)) (3)

so that the learned PDF of 𝐕0 is,

𝑔𝐕0
(𝐯) = ∫ 𝑔𝐕0 ,…,𝐕𝑛 (𝐯, 𝐯1,… , 𝐯𝑛)𝑑𝐕1∶𝑛. (4)

We then attempt to minimize, with respect to 𝜃, the cross entropy, 𝐿𝐶 𝐸 , between the actual PDF of 𝐕0, 𝑓𝐕0
and the recovered PDF

of 𝐕0, 𝑔𝐕0
, which is defined as,

𝐿𝐶 𝐸 = −E𝑓𝐕0 log(𝑔𝐕0
(𝐕0)). (5)

In [22], an upper bound 𝐿𝑉 𝐿𝐵 for 𝐿𝐶 𝐸 is given, which is the minimization target. It can be shown that the minimization of
𝐿𝑉 𝐿𝐵 by 𝜃 is equivalent to minimizing

E𝑓𝐕0 ,𝝐(𝐯0 ,𝑖)
[

𝛽𝑖∕(2(1 − 𝛽𝑖)(1 − 𝛼̄𝑖))‖𝝐(𝐯0, 𝑖) − 𝝐𝜃(𝐯𝑖, 𝑖)‖2
]

, f or 𝑖 = 1,… , 𝑛 (6)

where 𝝐(𝐯0, 𝑖) is the specific noise sample used in (2) to retrieve 𝐯𝑖|𝐯0 . Finally, the above minimization target can be further simplified
y not learning the variance associated with the reverse process, which preserves good performance [23], leading to the minimization

targets used in this study,

𝐿𝑖 = E𝑓𝐕0 ,𝝐(𝐯0 ,𝑖)
[

‖𝝐(𝐯0, 𝑖) − 𝝐𝜃(𝐯𝑖, 𝑖)‖2
]

, f or 𝑖 = 1,… , 𝑛. (7)

1 I.e. even for the same deterministic input 𝐯, 𝑝(𝐯) is a random variable
2 Given (1) 𝑓 can be recovered by integrating over 𝐕
𝐕𝑖 𝑖−1
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3. The criterion

We propose a criterion for the efficacy of diffusion models, as defined in Section 2, to extend the statistics of the dataset that they
have been trained on. The criterion is related to the location of the extreme events of the pertinent statistic on the data manifold
that the training dataset belongs to. Specifically, we conjecture that for a given quantity of interest, if the relevant extremes lie close
to the boundary of the underlying manifold, then this inhibits the ability of the diffusion model to extend said statistic. We make
the criterion statement more rigorous in the following definition,

Definition 3.1. Let ( , ⟨⋅, ⋅⟩) be an inner product space of finite dimension 𝑁 , and  an n-dimensional manifold with boundary 𝜕
embedded in  . Then, let t r ain ⊂ be a dataset of finite size, which will be used to train a diffusion model, and ext r eme ⊂ t r ain
be a set of extreme events as defined by the relevant setting. Now, for any 𝑝, 𝑞 ∈ , denote dist (𝑝, 𝑞) as the minimum on-manifold
distance, induced from its ambient space, so that dist (𝑝, 𝜕) is the distance between 𝑝 and the boundary of . The criterion is then
ased on the conjecture that while diffusion models are able to learn  based on t r ain, they are unable to capture the boundary

of 𝜕. The criterion then states that if ext r eme lies close to 𝜕 according to dist (⋅, ⋅), then a diffusion model trained on t r ain will
e unable to generate extreme events which extend the pertinent statistics in t r ain.

While for the on-hyperball dataset described in Section 4.1, dist (𝑝, 𝜕) is easily deduced by the norm of 𝑝 ∈ , in general,
omputing the distance of a point to the manifold boundary is not straightforward without further knowledge of . However,
ssuming that  does have a boundary, the algorithm presented in the remainder of this section allows us to gauge dist (𝑝, 𝜕)
etween different points 𝑝, and is employed in this study.

3.1. Manifold boundary identification

In [24], the authors present BRIM, an algorithm for detecting boundary points of clusters, which they define as follows [25]; a
boundary point 𝑝 is an object that satisfies the following conditions,

1. It is within a dense region, 𝑅1
2. There exists a region, 𝑅2, near 𝑝 with densit y (𝑅1)≫ densit y (𝑅2) or densit y (𝑅1)≪ densit y (𝑅2)

In this section we demonstrate that BRIM also has potential for the detection of boundary points, as defined in the following
ontext,

Definition 3.2. Let ( , ⟨⋅, ⋅⟩) be an inner product space of finite dimension 𝑁 , and  an n-dimensional manifold with boundary
𝜕 embedded in  . Then, for  ⊂ a dataset of finite size, we say that a point 𝑝 ∈  is a boundary point of  according to the
user defined parameter 𝛿 > 0, if

dist (𝑝, 𝜕) < 𝛿
where dist (⋅, ⋅) is the on-manifold distance, induced from its ambient space.

It should be noted that in [24], BRIM is tested only in 2-dimensional datasets in R2, so that 2 = 𝑛 = 𝑁 . In what follows we
present BRIM in the context of Definition 3.2 and argue that it is immediately applicable to higher-dimensional datasets.

The core idea in [24] is that points in the boundary of a cluster lie between regions of significantly different density. In terms of
Definition 3.2, boundary points have the unique characteristic that  locally resembles a half-space R𝑛1∕2 at 𝜕 𝑀 . In this connection,
for each point 𝑝 ∈ , BRIM essentially first identifies the direction that the manifold  is relative to 𝑝, and then, in a user-specified
eighborhood, compares how many points lie toward  versus away from . It follows that points whose neighborhood resembles
𝑛
1∕2, are able to be characterized by such a comparison. We proceed with an exact definition of the BRIM algorithm in the setting

of Definition 3.2, starting with the standard definition of the 𝛿-neighborhood of 𝑝 ∈ , 𝑁𝛿(𝑝) ⊆  as,

𝑁𝛿(𝑝) = {𝑞 ∈  ∶ ‖𝑞 − 𝑝‖ < 𝛿} (8)

where ‖ ⋅ ‖ =
√

⟨⋅, ⋅⟩ the norm induced by ⟨⋅, ⋅⟩. Then, to identify the direction that  lies relative to 𝑝, define the density attractor
f 𝑝, 𝑝∗𝛿 ∈ , as

𝑝∗𝛿 = ar gmax
𝑞∈𝑁𝛿 (𝑝)

|𝑁𝛿(𝑞)| (9)

where | ⋅ | denotes cardinality. It is then assumed that 𝑝∗𝛿 −𝑝 points towards  when mounted at 𝑝. Next, consider the space normal
o 𝑝∗𝛿 − 𝑝,

 = {𝑥 ∈  ∶ ⟨𝑥 − 𝑝, 𝑝∗𝛿 − 𝑝⟩ = 0} (10)

We say that a point in 𝑁𝛿(𝑝) lies towards , if it lies on the same side of  as 𝑝∗𝛿 does according to ⟨⋅, ⋅⟩. Specifically, 𝑥 ∈  lies on
the same side of  as 𝑝∗𝛿 if,

⟨𝑥 − 𝑝, 𝑝∗𝛿 − 𝑝⟩ > 0

Equivalently, if 𝑥pr oj is the projection of 𝑥 onto  ,

⟨𝑥 − 𝑥pr oj, 𝑝∗𝛿 − 𝑝⟩ > 0

We can the proceed to the definition of the boundary degree of a point 𝑝,
3 
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Definition 3.3. Define the positive neighborhood of 𝑝, 𝑁+
𝛿 (𝑝) ⊆ 𝑁𝛿(𝑝), as those points which lie on the same side of  as

does 𝑝∗𝛿 . Specifically, define 𝑁+
𝛿 (𝑝) = {𝑞 ∈ 𝑁𝛿(𝑝) ∶ ⟨𝑞 − 𝑝, 𝑝∗𝛿 − 𝑝⟩ ≥ 0}, and similarly let the negative neighborhood of 𝑝 be

𝑁−
𝛿 (𝑝) = {𝑞 ∈ 𝑁𝛿(𝑝) ∶ ⟨𝑞 − 𝑝, 𝑝∗𝛿 − 𝑝⟩ ≤ 0}. Finally, let the boundary degree of 𝑝 be

𝜕𝛿𝑝 =
|𝑁+

𝛿 (𝑝)|
|𝑁−

𝛿 (𝑝)|

Notice that |𝑁−
𝛿 (𝑝)| ≠ 0 and that 𝑁+

𝛿 (𝑝) ∩𝑁−
𝛿 (𝑝) ≠ ∅, since 𝑝 ∈ 𝑁+

𝛿 (𝑝) ∩𝑁−
𝛿 (𝑝).

Now, BRIM comprises of the 4 steps outlined in Algorithm 1. Having all 𝜕𝛿𝑝, the user may want to decide on a specific threshold
alue 𝜅 so that boundary points can be classified by 𝜕𝛿𝑝 > 𝜅.
Algorithm 1

1: Given a dataset  and a user specified 𝛿 parameter
2: Compute 𝑁𝛿(𝑝) for all 𝑝 ∈  as in Equation (8)
3: For all 𝑝 ∈  compute 𝑝∗𝛿 as in Equation (9)
4: Compute all positive and negative 𝑁+

𝛿 (𝑝), 𝑁−
𝛿 (𝑝) neighborhoods as in Definition 3.3

5: Compute all boundary degrees 𝜕𝛿𝑝 as in Definition 3.3

Next, it is the case that the boundary degrees 𝜕𝛿𝑝 identified by Algorithm 1, are geometric properties of the point-cloud , in the
sense that they remain invariant to rigid transformations and embeddings of the following form,

R𝑛 ∋ 𝑎1𝑒1 +⋯ + 𝑎𝑛𝑒𝑛 → 𝑎1𝑒1 +⋯ + 𝑎𝑛𝑒𝑛 + 0𝑒𝑛+1 +⋯ + 0𝑒𝑁 ∈ R𝑁 .

To prove this, we begin by introducing the following convention; let 𝜕𝛿𝑝, be the boundary degree of 𝑝 ∈  with respect to the
ataset  ⊂  and 𝑓 ∶ ( , ⟨⋅, ⋅⟩ ) → ( , ⟨⋅, ⋅⟩ ). By 𝜕𝛿𝑓 (𝑝) we refer to the boundary degree of 𝑓 (𝑝) with respect to 𝑓 ().

To proceed, recall that a transformation 𝑅 ∶  →  is an orthogonal transformation on ( , ⟨⋅, ⋅⟩), if
(∀𝑝, 𝑞 ∈ )(⟨𝑅(𝑢), 𝑅(𝑣)⟩ = ⟨𝑢, 𝑣⟩)

and 𝑇 ∶  →  is a rigid transformation on ( , ⟨⋅, ⋅⟩), if it can be written in the following form,

𝑇 (𝑢) = 𝑅(𝑢) + 𝑡
for some orthogonal transformation 𝑅 and some 𝑡 ∈  . Also, recall that if 𝑇 is rigid, and ‖ ⋅ ‖ is the norm induced on  from its
nner product, then

(∀𝑝, 𝑞 ∈ )(‖𝑇 (𝑝) − 𝑇 (𝑞)‖ = ‖𝑝 − 𝑞‖) (11)

It is then straightforward to prove that the boundary degree of 𝑝 ∈ , is invariant to rigid transformations,

Proposition 3.1. Let 𝜕𝛿𝑝 be the boundary degree of 𝑝 ∈  with respect to the dataset  ⊂  and 𝑇 ∶  →  be some rigid transformation
on  . Then, 𝜕𝛿𝑇 (𝑝) = 𝜕𝛿𝑝

Proof. We begin by showing that |𝑁𝛿(𝑝)| = |𝑁𝛿(𝑇 (𝑝))|, for which the following two statements suffice,

𝑞 ∈ 𝑁𝛿(𝑝) ⟺ 𝑇 (𝑞) ∈ 𝑁𝛿(𝑇 (𝑝)) and 𝑞 ≠ 𝑞′ ⟹ 𝑇 (𝑞) ≠ 𝑇 (𝑞′)

For the former we can write,

𝑞 ∈ 𝑁𝛿(𝑝) ⟺ ‖𝑞 − 𝑝‖ < 𝛿
⟺
(11)

‖𝑇 (𝑞) − 𝑇 (𝑝)‖ < 𝛿
⟺ 𝑇 (𝑞) ∈ 𝑁𝛿(𝑇 (𝑝))

while for the latter, it is enough to notice that orthogonal transformations are invertible. Looking at Eq. (9), it then follows that
(

𝑇 (𝑝)
)∗

𝛿
= 𝑇 (𝑝∗𝛿 )

so that we can conclude the proof by writing

𝑞 ∈ 𝑁+
𝛿 (𝑝) ⟺ ⟨𝑞 − 𝑝, 𝑝∗𝛿 − 𝑝⟩ ≥ 0

⟺ ⟨𝑇 (𝑞) − 𝑇 (𝑝), 𝑇 (𝑝∗𝛿 ) − 𝑇 (𝑝)⟩ ≥ 0

⟺ ⟨𝑇 (𝑞) − 𝑇 (𝑝),
(

𝑇 (𝑝)
)∗

𝛿
− 𝑇 (𝑝)⟩ ≥ 0

⟺ 𝑇 (𝑞) ∈ 𝑁+
𝛿 (𝑇 (𝑝))

We proceed similarly for showing that |𝑁−
𝛿 (𝑝)| = |𝑁−

𝛿 (𝑇 (𝑝))|. □

Similarly, we can prove that boundary degrees are also invariant to the elementary embedding of the relevant dataset on
higher-dimensional spaces,
4 
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Proposition 3.2. Consider a 𝑁-dimensional real inner product space (𝑁 , ⟨⋅, ⋅⟩𝑁 ) and a basis 𝑒1,… , 𝑒𝑁 . Construct the 𝑛 < 𝑁 dimensional
pace (𝑛, ⟨⋅, ⋅⟩𝑛) as follows: let 𝑛 = span(𝑒1,… , 𝑒𝑛) and define 𝜙 ∶ 𝑛 → 𝑁 as,

𝜙(𝑎1𝑒1 +⋯ + 𝑎𝑛𝑒𝑛) = 𝑎1𝑒1 +⋯ + 𝑎𝑛𝑒𝑛 + 0𝑒𝑛+1 +⋯ + 0𝑒𝑁 ,
so that for 𝑝, 𝑞 ∈ 𝑛, ⟨𝑝, 𝑞⟩𝑛 = ⟨𝜙(𝑝), 𝜙(𝑞)⟩𝑁 . Then, for 𝜕𝛿𝑝 the boundary degree of 𝑝 ∈  with respect to the dataset  ⊂ 𝑛, it is true that
𝜕𝛿𝜙(𝑝) = 𝜕𝛿𝑝.

Proof. It is trivial to see that 𝜙 is injective. Then we can write,

𝑞 ∈ 𝑁𝛿(𝑝) ⟺ ⟨𝑞 − 𝑝, 𝑞 − 𝑝⟩1∕2𝑛 < 𝛿
⟺ ⟨𝜙(𝑞) − 𝜙(𝑝), 𝜙(𝑞) − 𝜙(𝑝)⟩1∕2𝑁 < 𝛿
⟺ 𝜙(𝑞) ∈ 𝑁𝛿(𝜙(𝑝))

which follows from the linearity of 𝜙. We can then proceed identically to Proposition 3.1. □

Again, BRIM works by looking at some neighborhood of size 𝛿 about every datapoint, and then identifies, for each point, the
irection towards the core of the manifold (if the point is not near the boundary, any direction is equivalent) until, eventually, a

boundary degree is assigned to every point indicating how close it is to the boundary. In the general case, tuning 𝛿 for any given
ataset is not straightforward, with only the following statements available to us for the task in absence of other information about
he underlying manifold,

1. For any 𝛿 > 𝛿max (the greatest distance between any two points) the output of BRIM is the same
2. For any 𝛿 < 𝛿min (the smallest distance between any two points) the output of BRIM is the same
3. If 𝛿 is too large, then any global features of the underlying geometry such as non-convexity, will be lost
4. If 𝛿 is too small, then not enough points will be included about every point, resulting in erroneous identification of the

direction towards the interior of the manifold
Thus, in tuning 𝛿, we want to appropriately chose some 𝛿 ∈ (𝛿min, 𝛿max). For the case of the hypersphere, where we know that
the boundary degrees must be positively correlated with respect to norm of the data-points, we see a region closer to 𝛿min which
roduces positive correlation, though performance reduces with increasing the dimension of the hyperball and reducing the number

of points.

4. Datasets

We consider three datasets: (i) points distributed on a 2000-dimensional hyperball with their norm following a Weibull
istribution (ii) spatial trajectories, each of dimension 8192, extracted from the MMT 1-dimensional wave turbulence model (iii)
elocity time series, each of dimension 2000, extracted from a high-resolution numerical simulation of the 3D Navier–Stokes
quations with large-scale isotropic forcing.

For the first dataset, it follows by design that extreme events of the norm statistic will lie close to the boundary of the underlying
data manifold, which is a hyperball. Here we are interested in the statistic which computes the finite differences along the coordinates
of each datapoint, for which it is still true that the points on the hyperball which exhibit the largest finite differences tend to lie
close to the manifold boundary (see Section 5 for more details).

For the second and third datasets we observe the opposite, with points exhibiting the most extreme behavior being located in
the interior of the dataset, as will be shown in Section 5 using Algorithm 1. In what follows, we provide more details on the three
datasets and outline the sampling procedure followed for their generation.

4.1. On-hyperball distributions

Aiming to sample a distribution on the 𝑛-dimensional hyper-ball 𝐁𝑛(𝑟) (25), such that extreme events are classified by their
agnitude ‖𝐱‖, a promising candidate is choosing a PDF of the form 𝑓𝐗(𝐱) = 𝑒−𝜆‖𝐱‖2 . This way, the probability of lying in regions

of the hyperball away from its center will be significantly lower to those regions closer to it, thus classifying extremes as desired,
i.e. occurring for large values of ‖𝐱‖. Notice that this is precisely the form of a multivariate Gaussian distribution for an appropriate
choice of parameters. Specifically, recalling the definition of an n-dimensional Gaussian vector 𝐗 ∼  (𝜇 , 𝛴), when 𝛴 is positive
definite, to be,

𝑓𝐗(𝐱) =
exp

(

−0.5(𝐱 − 𝜇)𝑇𝛴−1(𝐱 − 𝜇)
)

√

(2𝜋)𝑛 det (𝛴)

we can set 𝜇 = 𝟎 and 𝛴 = (2𝜋)−1𝐈 to get,

𝑓𝐗(𝐱) =
exp

(

−0.5𝐱𝑇 ((2𝜋)−1𝐈)−1𝐱
)

√

(2𝜋)𝑛 det ((2𝜋)−1𝐈)
−𝜋‖𝐱‖2
= 𝑒 (12)
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Fig. 1. Distribution of the radii (left) and the first coordinate (right) of (12). Notice that even though each projection of 𝐗 naturally follows a Gaussian
distribution, the magnitude of the entire vector is concentrated at 𝑟 ∼ 17.8. Specifically, ‖𝐗‖ follows a 𝜒-distribution in 𝑛 degrees of freedom.

The PDFs of ‖𝐱‖ and 𝑥𝑖 for 𝑛 = 2000 are plotted in Fig. 1, where we can see that the radii of the sampled points are concentrated
at 𝑟 ∼ E[‖𝐱‖] = 17.83 with [‖𝐱‖min, ‖𝐱‖max] = [16.57, 19.15].

Initially, it may seem that the datapoints 𝐱 are distributed only in a tiny sliver of 𝐁𝑛(19.15). However, the ratio of the volume of
the 𝑛-shell 𝐒𝐡𝑛(𝑟1; 𝑟2) between radii 𝑟1 = 16.57 < 19.15 = 𝑟2 to the volume of 𝐁𝑛(19.15), is given by (28), (26) as,

𝐒𝐡𝑛(19.15, 16.57)
𝐁𝑛(19.15)

= 19.15𝑛 − 16.57𝑛
19.15𝑛

= 1 − 0.862000 ∼ 1

so that, in fact, essentially all of 𝐁𝑛(19.15) is covered by the distribution. However, the bulk of the points lying between 2 standard
distributions of the mean of ‖𝐱‖ in [E[‖𝐱‖] − 2𝜎 ,E[‖𝐱‖] + 2𝜎] = [17.27, 18.4], do occupy only a fraction 𝐁𝑛(19.15),

𝐒𝐡𝑛(17.27, 18.4)
𝐁𝑛(19.15)

∼ 0

Therefore, the manifold represented through (12) can be interpreted as the hypersphere 𝐁𝑛(E[‖𝐱‖] + 2𝜎) along with some noise close
to its boundary.

Alternatively we can proceed by directly choosing the distribution of the radii ‖𝐱‖ as follows. Consider the 𝑛 dimensional ball
of radius 𝑟,

𝐵𝑛 = {𝐱 ∈ R𝑛 ∶ ‖𝐱‖ < 𝑟} (13a)

and let

𝐗 = 𝑌𝐙∕‖𝐙‖, wher e 𝑌 ∼ 𝑓𝑌 , 𝐙 ∼  (𝟎, 𝐈) (13b)

Notice that ‖𝐗‖ follows the distribution of |𝑌 |. We choose 𝑌 to follow a Weibull distribution

𝑓𝑌 (𝑦; 𝜆, 𝑎) =
⎧

⎪

⎨

⎪

⎩

𝑎
𝜆

(

𝑦
𝜆

)𝑎−1

𝑒−(𝑦∕𝜆)
𝛼
, 𝑦 ≥ 0

0, 𝑦 < 0,

(13c)

for (𝑎, 𝜆) = (3∕2, 1) the chosen values for the so-called shape and scale parameters.
Here we are interested in extreme event statistics for the finite difference,

(𝑥1,… , 𝑥𝑛) → (𝛥𝜏𝑥1,… , 𝛥𝜏𝑥𝑛−𝜏 ) (14)

where 𝛥𝜏𝑥𝑖 = 𝑥𝑖+𝜏 − 𝑥𝑖 and 𝜏 = 5. Note that 𝜏 = 5 is chosen arbitrarily and without any loss of generality. We note that the above
difference is associated with pronounced tails, in contrast to the individual coordinates that follow a Gaussian distribution.

4.2. The Majda–McLaughlin–Tabak wave model

In the context of 1-dimensional wave turbulence, the following 2-parameter family of equations was proposed in [26],
𝑎 −𝛽∕4

(

| −𝛽∕4 |

2 −𝛽∕4
)

𝑖𝜕𝑡𝑢 = |𝜕𝑥| 𝑢 + 𝜆|𝜕𝑥| |

|

|𝜕𝑥| 𝑢|
|

|𝜕𝑥| 𝑢 + 𝑖𝐷 𝑢 𝑎 > 0, 𝛽 ∈ R (15)

6 
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Fig. 2. Contour of a solution |𝑢(𝑡, 𝑥)| of (18) for 𝜆 = −4.0 with timestep ℎ = 0.001, over 𝑥 ∈ [0, 2𝜋], 𝑡 ∈ [0, 300].

where 𝑢(𝑡, 𝑥) ∶ R2 → C is interpreted as a stochastic process with 𝑡 index, the pseudo-differential operator |𝜕𝑥|
𝑎 is defined through

|̂𝜕𝑥|
𝑎𝑢(𝑘) = |𝑘|𝑎𝑢̂(𝑘) (16)

and the selective Laplacian operator 𝐷 𝑢 defined as

𝐷 𝑢(𝑘) =
{

−(|𝑘| − 𝑘∗)2𝑢̂(𝑘) |𝑘| > 𝑘∗
0 |𝑘| ≤ 𝑘∗.

(17)

𝐷 𝑢 introduces dissipation for |𝑘| > 𝑘∗, where 𝑘∗ is a user-specified threshold. In analogy to [27], we chose the member (𝑎, 𝛽) = (1∕2, 0)
of (15),

𝑖𝜕𝑡𝑢 = |𝜕𝑥|
1∕2𝑢 + 𝜆|𝑢|2𝑢 + 𝑖𝐷 𝑢 (18)

as then we retrieve the dispersion relation for deep waves 𝜔2 = |𝑘|. We solve (18), by employing ETD4RK [28], a 4t h order Runge–
Kutta exponential time differencing scheme, with more details given in Appendix B. In alignment with [27], we choose 𝜆 = −4 and
solve (18) for 𝑥 ∈ [0, 2𝜋] and 𝑡 ∈ [0, 300], with the initial conditions being the superposition of random phase harmonics. Specifically,
we let

𝑢(0, 𝑥) =
15
∑

𝑗=1
𝑒𝑖(𝑗 𝑥+2𝜋 𝜃𝑗 ,1) + 𝑒𝑖(−𝑗 𝑥+2𝜋 𝜃𝑗 ,2) (19)

where 𝜃𝑗 ,1, 𝜃𝑗 ,2 are independent identically distributed uniform random variables taking values in [0, 1]. For a specific realization of
(19), we plot |𝑢(𝑡, 𝑥)| in Fig. 2. It should be noted that 𝑢(0, 𝑥) is periodic with period 2𝜋, which implies that for any given realization
of (19), the full range of initial conditions is given in [0, 2𝜋].

The above system is an example where extreme events ‘live’ in the interior of the domain. Specifically, as shown in [27] an
extreme event may be formed if the combination of random initial phases is appropriate. Such a combination does not need to be
the boundary of the dataset. For this reason, this is a good candidate dataset to extrapolate the tails using generative models.

As for the MMT dataset, the quantities of interest for this case are the finite differences 𝛥𝑢 across each trajectory,

(|𝑢1|,… , |𝑢𝑛|) → (𝛥𝜏 |𝑢1|,… , 𝛥𝜏 |𝑢𝑛−𝜏 |) (20)

where 𝛥𝜏 |𝑢𝑖| = |𝑢𝑖+𝜏 |− |𝑢𝑖| and 𝜏 = 5. Again, 𝜏 = 5 is chosen arbitrarily without any loss of generality and the quantity 𝛥𝜏 |𝑢|, across
the dataset, exhibits pronounced tails.

4.2.1. Generation and uncorrelated sampling of an ensemble of solutions
To proceed, we generate an ensemble of 300 solutions, and aim at sampling each member of this ensemble at various times 𝑡𝑖, so

that for any one solution, all samples drawn from it are uncorrelated. Specifically, from each solution we extract 𝑢(𝑡 , 𝑥),… , 𝑢(𝑡 , 𝑥),
1 𝑁

7 
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Fig. 3. Autocorrelation between 𝑢(100, 𝑥) and 𝑢(𝑡, 𝑥), over an ensemble of 10 solutions of (18).

Fig. 4. Logarithmic plot of the correlation integral 𝐶(𝜖) [29] over the neighborhood parameter 𝜖 for the MMT dataset lying on mmt , computed via the Julia
library FractalDimensions.jl [31].

such that any pair of random variables 𝑢(𝑡𝑖, 𝑥), 𝑢(𝑡𝑗 , 𝑥) is uncorrelated. It should be noted that the discretization of the solution in 𝑥
is of size 8192, which makes the dimensionality of the MMT dataset also 8192. In Fig. 3, we see the norm of the auto-correlation,

|𝑅(𝑡𝑖, 𝑡𝑗 )| = |E[𝑢(𝑡𝑖, 𝑥)𝑢(𝑡𝑗 , 𝑥)]| (21)

for 𝑡𝑖 = 100 and 𝑡𝑗 ∈ [100, 200], where 𝑢 denotes complex conjugation. We note that the reason we choose the starting sampling time
to be 𝑡 = 100 is because even though the statistics of the 𝑢(𝑡, 𝑥) stochastic process never reach a statistical steady state, after 𝑡 = 100,
when a lot of the system energy provided by the initial conditions has been dissipated, the solution reaches a nearly statistical steady
state [27]. To ensure that we have extracted uncorrelated samples we proceed as follows: (i) we pick a minimum 𝑡min and maximum
𝑡max distancing between samples (ii) for each solution in the ensemble we begin by picking a random 𝑡 ∈ [100, 100 +𝑡min−𝑡max] and then
taking steps of random length 𝑙, 𝑡min < 𝑙 < 𝑡max, until we reach 𝑡 = 200, at each step saving the relevant sample (iii) finally we compute
the norm of the auto-correlation between all pairs of samples to ensure that it remains small enough. Notice that it is not enough for
auto-correlation to be computed across consecutive samples as we have no guarantees about the stationarity of the random process
𝑢(𝑡, 𝑥). For the computed ensemble of size 300, we chose 𝑡𝑚𝑖𝑛 = 7.5, retrieving 3755 samples, with max(|𝑅(𝑡𝑖, 𝑡𝑗 )|) = 0.037 which is in
agreement with Fig. 3.

4.2.2. The dimension of the MMT data manifold
In this section we aim at providing some insight to the complexity of the MMT data manifold mmt , which is a subset of R8192.

In contrast to the hyperball dataset, where the manifold is known, the mmt is significantly more complicated to quantify, since it
depends both on the numerical scheme used to approximate solutions 𝑢(𝑥, 𝑡) of (15) and also on the sampling scheme used to extract
uncorrelated trajectories 𝑢(𝑡𝑖, 𝑥). However, viewing each point precisely as following some distribution on mmt , it is straightforward
to calculate the correlation dimension for the relevant dataset [29]. Applying the Grassberger–Procaccia algorithm [30] to estimate
it, through the Julia library FractalDimensions.jl [31], we arrive at the conclusion that dim(mmt ) ∈ [3.68, 3.97]. In Fig. 4,
we see the relevant logarithmic plot of the correlation integral 𝐶(𝜖) over the neighborhood parameter 𝜖.
8 
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Fig. 5. This is Fig. 1(b,c,d) from [15], where, for three different trajectories, one component of the velocities 𝑉 𝑘
𝑖 (denoted simply 𝑉𝑖 in the figure), normalized

by one standard deviation, is shown, over the 𝑇 ≈ 200𝜏𝜂 length of the trajectory. From top to bottom, the sampling length of 𝛥𝜏𝑉 𝑘
𝑖 (𝑡) is indicated for 𝜏 = 100𝜏𝜂 ,

𝜏𝜂 or 𝜏𝜂 , respectively.

4.3. Lagrangian turbulence

The 3r d dataset that we consider consists of time-series of particle velocities 𝑉 (𝑡), which are obtained by a high-resolution
umerical simulation of the 3D Navier–Stokes equations with large-scale isotropic forcing [15,32]. Specifically, each particle 𝑖,
ollows the tracer dynamics

𝑉𝑖(𝑡) = 𝑢(𝑋𝑖(𝑡), 𝑡) (22)

where 𝑢 is a solution to the Navier–Stokes equations [33,34],
{

𝜕𝑡𝑢 + 𝑢 ⋅ ∇𝑢 = −∇𝑝 + 𝜈 𝛥𝑢 + 𝐹
∇ ⋅ 𝑢 = 0 (23)

and 𝐹 is a homogeneous and isotropic forcing term which drives the flow to a non-equilibrium statistically steady state. Moreover,
𝐹 is obtained via a 2nd order Ornstein–Uhlenbeck process [35,36], in which context 2 characteristic time scales are included; 𝜏𝐸
which is representative of the energy-containing scales of motion at 1st order and 𝜏𝜂 which is representative of the dissipative scales
of motion, at 2nd order. For further details on the specifics of the numerical simulation the reader is referred to [37].

For the database used in this study and in [15], 𝑁𝑝 = 327680 particles trajectories are tracked, each spanning a length of
𝑇 ≈ 200𝜏𝜂 , sampled every 𝑑 𝑡 ≈ 0.1𝜏𝜂 , so that each time series consists of 𝑇 ∕𝑑 𝑡 = 2000, 3-dimensional velocities, 𝑉𝑖(𝑡𝑗 ) =
(𝑉 𝑥
𝑖 (𝑡𝑗 ), 𝑉 𝑦

𝑖 (𝑡𝑗 ), 𝑉 𝑧
𝑖 (𝑡𝑗 )) ∈ R3. These 𝑁𝑝 particles are injected into the cubic-periodic domain of the simulation at random, once a

tatistically stationary evolution has been achieved for the underlying Eulerian flow. For the 1-dimensional diffusion model trained
n [15], the three velocity components are not distinguished thus tripling the size of the available data to 983040 trajectories,

{(

𝑘 𝑘
) }
f ull = 𝑉𝑖 (𝑡1),… , 𝑉𝑖 (𝑡2000) ∶ 𝑖 ∈ {1,… , 327680} and 𝑘 ∈ {𝑥, 𝑦, 𝑧} (24)

9 
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Fig. 6. PDFs of 𝛥𝜏 statistic (14), in linearly (top) and logarithmically (bottom) scaled axes, for the training and full on-hyperball dataset following the distribution
defined in Eqs. (13).

Finally, all the observables of interest primarily rely on the statistics of the finite time differences 𝛥𝜏𝑉 𝑘
𝑖 (𝑡) = 𝑉 𝑘

𝑖 (𝑡+𝜏) −𝑉 𝑘
𝑖 (𝑡), exactly

as in Eqs. (14) and (20). The length of 𝜏, relative to the entire trajectory length, for 𝜏 ∈ {100𝜏𝜂 , 5𝜏𝜂 , 𝜏𝜂} is visualized in Fig. 5, along
with some indicative trajectories 𝑉 𝑘

𝑖 (𝑡).

5. Results

To perform the numerical experiments, for each dataset f ull, which is used for reference statistics, we retrieve another smaller
dataset t r ain from the same distribution to train the diffusion model. Specifically, for the on-hyperball dataset following the
distribution defined through Eqs. (13), we generate approximately 330 ⋅ 103 points on a 2000-dimensional hyperball, which we
denote as f ull, and then we train a diffusion model on another dataset following the same distribution of only 15 ⋅ 103 points. The
respective PDFs, of 𝛥𝜏𝑥 are shown in Fig. 6.

On the other hand, for the MMT dataset, we generate 57⋅103 trajectories, which we denote as f ull, and then we generate another
set of trajectories of size 3.7 ⋅ 103, on which we train a diffusion model. Details about the hyperparameters chosen in the training of
both models can be found in Appendix D.

Before proceeding with the results from the diffusion models trained on these three datasets, we first apply criterion 3.1. For
the on-hyperball dataset, it is evident by looking at Fig. 7, that for each point 𝐱 = [𝑥1,… , 𝑥𝑛], the quantities ‖𝐱‖ and max𝑖 |𝛥𝜏 |𝑥𝑖 ∥
are positively correlated. In turn, this implies that, for this dataset, the extreme events as defined through the statistic 𝛥𝜏 |𝑥𝑖|, lie
close to the manifold boundary.

For the MMT it is necessary to apply Algorithm 1 to determine how close the extreme events are to the manifold boundary.
Since the algorithm depends on the parameter 𝛿, which determines the size of the neighborhood used to calculate the boundary
degrees 𝜕𝛿𝐮 of each datapoint 𝐮, the choice of 𝛿 needs to be investigated. We begin by defining as extreme events those points 𝐮,
for which max𝑖 |𝛥𝜏 |𝑢𝑖 ∥ is further than 2 standard deviations from the mean of the entire dataset. Then, for any one 𝛿, we classify
a point 𝐮 as lying in the interior of  if 𝜕𝛿𝐮 is less than the mean of 𝜕𝛿𝐯 plus a single standard deviation over all 𝐯 in the dataset
(further details and discussion on this process are provided in Appendix C). We can then calculate, for each 𝛿, the percentage of
extreme events which lie in the interior of the manifold. In Fig. 8 we plot the boundary degrees 3.3 of the MMT dataset, for some
indicative parameters 𝛿 ∈ [16, 19] (again for details on how this interval is selected we refer to Appendix C), parametrized according
to max |𝛥𝜏𝑢| exhibited in the relevant sample. The red dashed line is the cutoff, point below which, all points are classified as interior
points. It becomes evident that for this case, the extreme events lie predominantly in the interior of the manifold.

Proceeding with the Lagrangian dataset used in [15], we repeat the previous process of applying Algorithm 1, again defining
extreme events and boundary points in the same way as before. There are four statistics of the dataset that are investigated, each
a finite difference 𝛥𝜏𝑉𝑖 of the velocity trajectories, for different values of 𝜏. Specifically, for 𝜏𝜂 one of the characteristic time scales
of the Lagrangian turbulence problem (see Section 4.3), the authors in [15] investigate the cases when 𝜏∕𝜏𝜂 ∈ {1, 2, 5, 100}. Plotting
the relevant statistic of the datapoints against their boundary degrees in Figs. 9–12, respectively for each 𝜏∕𝜏𝜂 , we see that for all
four cases, a significant proportion of the resulting extremes lie in the interior of the manifold.

Thus, Criterion 3.1 implies that the diffusion model will do much better on capturing the tails of the observables of interest in
the MMT and Lagrangian datasets compared with the on-hyperball dataset.
10 
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Fig. 7. Norm ‖𝐱‖ of the elements 𝐱 ∈  of the on-hyperball dataset (see Eq. (13)), for various parameters, parametrized according to max |𝛥𝜏𝑢| exhibited in the
relevant sample. In the legend, the respective correlation coefficient is reported. It is evident that there is a strong positive correlation between the distance of
samples to the boundary of the underlying manifold  and the most extreme occurrences of the statistic 𝛥𝜏 , so that the relevant extreme events are expected
to lie close to the boundary of .

Fig. 8. Boundary degrees 3.3 of the MMT dataset (see Section 4.2.1), for various parameters 𝛿 ∈ [16, 19], parametrized according to max |𝛥𝜏𝑢| exhibited in the
relevant sample. In the legend, we report the 𝛿 parameter used in Algorithm 1 to calculate the relevant boundary degrees and the percentage, 𝑝, of extreme
events (𝑢 such that max |𝛥𝜏𝑢| > 𝜇 + 2𝜎) that are classified as interior points. It becomes evident that for this case, the extreme events lie predominantly in the
interior of the manifold.

Indeed, observing Fig. 13 that involves the on-hyperball dataset, we note that the blue curve, which is based on 320 ⋅103 samples
generated by the diffusion model, is unable to capture the tails past ±0.2. On the other hand, for the MMT dataset in Fig. 14, the
shape of the tails generated by the trained diffusion model using 57 ⋅ 103 samples, is captured correctly from [−0.7, 0.5] to ±1.5. It
should be emphasized that while the tail is captured accurately, the absolute value of the probability of the tails is not. This may
be associated with the sharp value of the PDF at 0, which requires a large number of data points to capture, not available in this
experiment. Similarly, for the Lagrangian dataset, looking at Fig. 15, it is evident that the diffusion model trained on 10% of the
available data (green line) is able to successfully extrapolate the statistics of its training dataset, for all 𝜏∕𝜏𝜂 = {1, 2, 5, 100}.

6. Conclusions

We have formulated a generic geometric criterion to project the performance of diffusion models on capturing extreme statistics
for events not necessarily present in the training data. The key idea behind the criterion is to evaluate whether the generative
algorithm will need to operate in an interpolation or extrapolation mode. For the case where extreme events ‘live’ on the boundary
of the dataset we expect that generative algorithms will have poor performance, simply because they do not have the underlying
information to extrapolate statistics. On the other hand, if the extreme events are embedded in the manifold of data, it is expected
that generative algorithms will have the capacity to generate a large number of samples that can eventually reproduce extreme
event statistics. We have employed a geometric algorithm that is capable of computing the criterion even for very high-dimensional
datasets.
11 
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Fig. 9. Boundary degrees 3.3 of the Lagrangian Turbulence dataset (see [15]) and statistic corresponding to 𝜏∕𝜏𝜂 = 1, for various parameters 𝛿, parametrized
according to max |𝛥𝜏𝑢| exhibited in the relevant sample. In the legend, we report the 𝛿 parameter used in Algorithm 1 to calculate the relevant boundary degrees
and the percentage, 𝑝, of extreme events (𝑢 such that max |𝛥𝜏𝑢| > 𝜇 + 2𝜎) that are classified as interior points. It becomes evident that for this case, a high
percentage of the extreme events lie in the interior of the manifold. Across all 𝛿 ∈ [25, 260], at least 70% of extreme events are classified as lying in the interior
points.

Fig. 10. Boundary degrees 3.3 of the Lagrangian Turbulence dataset (see [15]) and statistic corresponding to 𝜏∕𝜏𝜂 = 2, for various parameters 𝛿, parametrized
according to max |𝛥𝜏𝑢| exhibited in the relevant sample. In the legend, we report the 𝛿 parameter used in Algorithm 1 to calculate the relevant boundary degrees
and the percentage, 𝑝, of extreme events (𝑢 such that max |𝛥𝜏𝑢| > 𝜇 + 2𝜎) that are classified as interior points. It becomes evident that for this case, a high
percentage of the extreme events lie in the interior of the manifold. Across all 𝛿 ∈ [25, 260], at least 65% of extreme events are classified as lying in the interior
points.

We have illustrated the geometric criterion on three high-dimensional datasets with very different properties: in the first dataset
the extreme events lie on the boundary and in the other two cases on the interior of the dataset. As expected, poor performance
in capturing tail statistics is observed in the dataset where extremes are on the boundary of the dataset, while for other two,
where extremes are in the interior, the tails predicted by the diffusion model compare favorably with the reference statistics. The
developed criterion can be used as a guideline, an a priori test, to predict the performance in capturing extreme event statistics for
problems where data is not plentiful. Further, since the criterion is not informed by the specific DDPM architecture, we expect it
to be applicable to a larger class of generative models, such as GANs. It is then reasonable, for further research, to investigate the
applicability/ non-applicability of the criterion on a wider domain than presented here.
12 
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Fig. 11. Boundary degrees 3.3 of the Lagrangian Turbulence dataset (see [15]) and statistic corresponding to 𝜏∕𝜏𝜂 = 5, for various parameters 𝛿, parametrized
according to max |𝛥𝜏𝑢| exhibited in the relevant sample. In the legend, we report the 𝛿 parameter used in Algorithm 1 to calculate the relevant boundary degrees
and the percentage, 𝑝, of extreme events (𝑢 such that max |𝛥𝜏𝑢| > 𝜇 + 2𝜎) that are classified as interior points. It becomes evident that for this case, a high
percentage of the extreme events lie in the interior of the manifold. Across all 𝛿 ∈ [25, 260], at least 54% of extreme events are classified as lying in the interior
points.

Fig. 12. Boundary degrees 3.3 of the Lagrangian Turbulence dataset (see [15]) and statistic corresponding to 𝜏∕𝜏𝜂 = 100, for various parameters 𝛿, parametrized
according to max |𝛥𝜏𝑢| exhibited in the relevant sample. In the legend, we report the 𝛿 parameter used in Algorithm 1 to calculate the relevant boundary degrees
and the percentage, 𝑝, of extreme events (𝑢 such that max |𝛥𝜏𝑢| > 𝜇 + 2𝜎) that are classified as interior points. It becomes evident that for this case, a high
percentage of the extreme events lie in the interior of the manifold. Across all 𝛿 ∈ [25, 260], at least 46% of extreme events are classified as lying in the interior
points.
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Fig. 13. PDFs of 𝛥𝜏 statistic (14), in linearly (top) and logarithmically (bottom) scaled axes, for the on-hyperball dataset following the distribution defined in
Eqs. (13). The blue-colored PDF represents a dataset generated through a diffusion model trained on the training dataset t r ain, while f ull is a larger dataset
following the same distribution as t r ain. In particular, |t r ain| = 15 ⋅ 103, |dif f usion| = 320 ⋅ 103 and |f ull| = 330 ⋅ 103.

Fig. 14. PDFs of 𝛥𝜏 statistic (20), in linearly (top) and logarithmically (bottom) scaled axes, for the dataset following the distribution defined in Section 4.2.1.
The blue-colored PDF represents a dataset generated through a diffusion model trained on the training dataset t r ain, while f ull is a larger dataset following the
same distribution as t r ain. In particular, |t r ain| = 3.7 ⋅ 103, |dif f usion| = 120 ⋅ 103 and |f ull| = 57 ⋅ 103.

Appendix A. Elementary geometry of high dimensional balls

A 𝑛-dimensional ball of radius 𝑟 centered at 𝐜 is defined as

𝐁𝑛(𝐜; 𝑟) = {𝐱 ∈ R𝑛 ∶ ‖𝐜 − 𝐱‖ ≤ 𝑟} (25)

where if 𝐜 is omitted, it will be taken to equal 𝟎 where its n-dimensional volume is given by
𝑛 𝜋𝑛∕2𝑟𝑛
𝑉 (𝐁 (𝐜; 𝑟)) =

𝛤 (𝑛∕2 + 1) (26)
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Fig. 15. This is Figure 1a from [15], where the PDFs for finite increments of the velocities 𝑉𝑖 are shown for 𝜏∕𝜏𝜂 = 1, 2, 5, 100, from bottom to top. The PDFs
or different 𝜏 are shifted for the sake of presentation. The black lines correspond to the dataset generated through Direct Numerical Simulation (DNS), which
orresponds to f ull in our notation. The blue lines correspond to the Diffusion Model on 1-Component (DM-1c) that the authors trained on f ull. The green
ines (DM-1c-10%) correspond to the diffusion model that the authors trained on 10% of f ull, which is dif f usion in our notation. It is evident that the diffusion
odel is able to successfully extrapolate the statistics of its training dataset.

Now, consider the ball 𝐁𝑛(𝐜; 0.5), 𝐜 = (0.5,… , 0.5)𝑇 inscribed in the unit hypercube [0, 1]𝑛. It is easy to see that the volume occupied
by 𝐁𝑛 is dominated by that [0, 1]𝑛 as the dimension increases,

𝑉 (𝐁𝑛(𝐜; 0.5))
𝑉 ([0, 1]𝑛)

=
(
√

𝜋∕2)𝑛

𝛤 (𝑛∕2 + 1) → 0, 𝑛→ ∞

Next, define the 𝑛-dimensional shell of 𝑟1 < 𝑟2, centered at 𝐜 as,

𝐒𝐡𝑛(𝐜; 𝑟1; 𝑟2) = 𝐁𝑛(𝐜; 𝑟2)∕𝐁𝑛(𝐜; 𝑟1) = {𝐱 ∈ R𝑛 ∶ 𝑟1 < ‖𝐱 − 𝐜‖ ≤ 𝑟2} (27)

Based on (26) it is trivial to write,

𝑉 (𝐒𝐡𝑛(𝐜; 𝑟1; 𝑟2)) = 𝜋𝑛∕2𝑟𝑛

𝛤 (𝑛∕2 + 1) (𝑟
𝑛
2 − 𝑟

𝑛
1) (28)

Now, it is interesting to compare the volumes of 𝐁𝑛(𝑅) and 𝐁𝑛(𝑟) for 𝑟 ∈ [0, 𝑅]. Specifically,

𝑉 (𝐁𝑛(𝑟))
𝑉 (𝐁𝑛(𝑅))

=

(

𝑟
𝑅

)𝑛

→ 0, 𝑛→ ∞ (29)

which means that in high enough dimensions, the volume of 𝐁𝑛(𝑅) is concentrated in 𝐒𝐡𝑛(𝐜;𝑅 − 𝛿 𝑟;𝑅).

Appendix B. Solution scheme for the MMT equations

In this section we provide details on how we solved Eq. (18), by employing ETD4RK [28] scheme. Specifically, given an ordinary
ifferential equation of the form,

𝜓̇(𝑡) = 𝑐 𝜓(𝑡) + 𝐹 (𝜓(𝑡), 𝑡) (30)

with initial condition 𝜓(𝑡0) = 𝜓0, let

𝑎𝑛 = 𝜓𝑛𝑒
𝑐 ℎ∕2 + (𝑒𝑐 ℎ∕2 − 1)𝐹 (𝜓𝑛, 𝑡𝑛)∕𝑐 , (31a)

𝑏𝑛 = 𝜓𝑛𝑒
𝑐 ℎ∕2 + (𝑒𝑐 ℎ∕2 − 1)𝐹 (𝑎𝑛, 𝑡𝑛 + ℎ∕2)∕𝑐 , (31b)

𝑐𝑛 = 𝑎𝑛𝑒
𝑐 ℎ∕2 + (𝑒𝑐 ℎ∕2 − 1)(2𝐹 (𝑏𝑛, 𝑡𝑛 + ℎ∕2) − 𝐹 (𝜓𝑛, 𝑡𝑛))∕𝑐 , (31c)

𝜓𝑛+1 = 𝜓𝑛𝑒
𝑐 ℎ+

(

𝐹 (𝜓𝑛, 𝑡𝑛)(−4 − ℎ𝑐 − 𝑒𝑐 ℎ(4 − 3ℎ𝑐 + ℎ2𝑐2))
+ 2(𝐹 (𝑎𝑛, 𝑡𝑛 + ℎ∕2) + 𝐹 (𝑏𝑛, 𝑡𝑛 + ℎ∕2))(2 + ℎ𝑐 + 𝑒𝑐 ℎ(−2 + ℎ𝑐)) (31d)

+ 𝐹 (𝑐𝑛, 𝑡𝑛 + ℎ)(−4 − 3ℎ𝑐 − ℎ2𝑐2 + 𝑒𝑐 ℎ(4 − ℎ𝑐))
)

∕(ℎ2𝑐3)

where ℎ = 𝑡 − 𝑡 . To utilize (30), we move (18) into Fourier space by multiplying with 𝑒−𝑖𝑥𝑘 and integrating over 𝑥,
𝑛+1 𝑛
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𝑖𝜕𝑡𝑢(𝑡; 𝑘) = ̂
|𝜕𝑥|

1∕2𝑢(𝑡; 𝑘) + 𝜆|̂𝑢|2𝑢(𝑡; 𝑘) + 𝑖𝐷 𝑢(𝑡; 𝑘)
so that if we factor 𝜕𝑡 out of the first term and expand the second and fourth terms according to (16) and (17) respectively,

𝜕𝑡𝑢̂(𝑡; 𝑘) =
⎧

⎪

⎨

⎪

⎩

((|𝑘| − 𝑘∗)2 − 𝑖
√

|𝑘|)𝑢̂(𝑡; 𝑘) − 𝑖𝜆|̂𝑢|2𝑢(𝑡; 𝑘) |𝑘| > 𝑘∗
−𝑖
√

|𝑘|𝑢̂(𝑡; 𝑘) − 𝑖𝜆|̂𝑢|2𝑢(𝑡; 𝑘) |𝑘| ≤ 𝑘∗
(32)

which for any choice of 𝑘 is clearly in the form (30). We should note that in order to solve (32) using (31a), it is necessary to
valuate the so-called 𝜙-functions,

𝜙1(𝑧) = 𝑒𝑧 − 1
𝑧

and 𝜙3(𝑧) =
𝑒𝑧 − 𝑧2∕2 − 𝑧 − 1

𝑧3

which suffer from numerical cancellation errors for |𝑧| → 0 [38]. To circumvent this, we utilize the EXPRINT library [39] which
employs Padé approximation for the relevant computations. To proceed, we retrieve the initial conditions 𝑢(0, 𝑥) from Eq. (19) and
ransport them to Fourier space, symmetrizing them by removing their highest mode, and set 𝜓0(𝑘) = 𝑢(0, 𝑥)(𝑘).

Appendix C. Selecting the 𝜹 parameter for BRIM

As mentioned in Section 5, for the MMT and the Lagrangian datasets, it is necessary to apply Algorithm 1 in order to determine
ow close the extreme events are to the manifold boundary. In this appendix, we go into detail on the process of choosing a range

for the parameter 𝛿 when applying Algorithm 1.
This parameter determines the size of the neighborhood used to calculate the boundary degrees, 𝜕𝛿𝐮, of each datapoint 𝐮. In

general, there is a range [𝛿min, 𝛿max], with 𝜕𝛿𝐮 = 𝜕𝛿min
𝐮 for all 𝛿 ≤ 𝛿min and 𝜕𝛿𝐮 = 𝜕𝛿max

𝐮 for all 𝛿 ≥ 𝛿max, so that we need to only
investigate 𝛿 ∈ [𝛿min, 𝛿max]. Next, recall that, as explained in Section 3, not all of the values within [𝛿min, 𝛿max] are admissible, since
for large values of 𝛿, local features of the manifold are obscured. On the other hand, for small values, the normal vector at the
manifold boundary is erroneously approximated. Further, denoting 𝑚(𝛿) = min𝐮 𝜕𝛿𝐮 and 𝑀(𝛿) = max𝐮 𝜕𝛿𝐮, we note that for large
atasets, we expect that when 𝛿 is admissible, intermediate values in [𝑚(𝛿), 𝑀(𝛿)] will also be attained by 𝜕𝛿𝐮. One way to see this, is
o first consider the limiting process of increasing the size of the dataset, in such a way that the continuous manifold  is recovered,
ith approximately uniform density in its interior across all steps of the process. Then, 𝜕𝛿𝐮(𝑡) is expected to be continuous on any
n-manifold trajectory 𝑢(𝑡) ∶ R → , which implies that for discrete but reasonably large datasets, if 𝜕𝛿𝐮 is strongly binary (i.e. all

values are either very close to 𝑚(𝛿) and/or 𝑀(𝛿)), then this is an indicator of inadmissibility for the specific 𝛿. For instance, for the
MMT dataset we get [𝛿min, 𝛿max] ≈ [16, 23], but for 𝛿 ∈ [20, 23] this desirable non-binary behavior just described is not apparent (see
Fig. 16), rendering the admissible range of 𝛿 as a subset of [16, 20].

We can now begin the investigation of the positions of the extreme events of the MMT dataset for all 𝛿. To do this, we define
s extreme events those points 𝐮, for which max𝑖 |𝛥𝜏 |𝑢𝑖 ∥ is further than 2 standard deviations from the mean of the entire dataset.
hen, for any one 𝛿, we classify a point 𝐮 as lying in the interior of  if 𝜕𝛿𝐮 is less than the mean of 𝜕𝛿𝐯 plus a single standard
eviation over all 𝐯 in the dataset. The addition of a standard deviation is added to take into account the variability of the boundary
egrees of interior points from the fact that the points are not evenly distributed in the ambient space. We can then calculate, for
ach 𝛿, the percentage of extreme events which lie in the interior of the manifold. Looking at Fig. 17, it is evident that, indeed, a
ery small portion of the extreme events on the MMT data manifold lie close to its boundary.

Proceeding with the Lagrangian dataset used in [15], we repeat the previous calculation, again defining extreme events and
boundary points in the same way as before. There are 4 statistics of the dataset that are investigated, each a finite difference 𝛥𝜏𝑉𝑖 of
the velocity trajectories, for different values of 𝜏. Specifically, for 𝜏𝜂 one of the characteristic time scales of the Lagrangian turbulence
problem in [15], the authors investigate the cases when 𝜏∕𝜏𝜂 ∈ {1, 2, 5, 100}. The resulting range is now 𝛿 ∈ [25, 260], and looking at
Fig. 18, we see that for all four cases of 𝜏∕𝜏𝜂 , a significant proportion of the resulting extremes lie in the interior of the manifold.
Since this is the case for all values of 𝛿, no further investigation into which 𝛿 are admissible is necessary.

Appendix D. Diffusion model hyperparameters

In this section we document the exact hyperparameters used to train the diffusion models used in this study. The diffusion model
ramework we employ is identical to that employed in [15] so that for further details on the specific hyperparameters the reader is

referred there. For the on-hyperball dataset (see Fig. 13), we have the following list of hyperparameters

• diffusion_steps= 3000
• noise_schedule= t anh 2, 0.33
• num_channels= 128
• num_res_blocks= 3
• channel_mult= 1, 1, 2, 3, 4
• attention_resolutions= 250, 125
• batch_size= 32
• learning_rate= 10−4
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Fig. 16. Boundary degrees 3.3 of the MMT dataset (see Section 4.2.1), for 𝛿 ∈ {19.65, 20.82, 21.99, 22.93}, parametrized according to max |𝛥𝜏𝑢| exhibited in the
relevant sample. It is evident that the pseudo-continuity property expected from admissible values of 𝛿 is not exhibited for 𝛿 < 20, rendering the range 𝛿 ∈ [20, 23]
inadmissible.

Fig. 17. Percentage of extreme events in the MMT dataset (see Section 4.2.1), which lie in the interior of the manifold, as determined by Algorithm 1 for all
𝛿 ∈ [𝛿min , 𝛿max]. Extreme events are characterized as those further than 2 standard deviations away from the mean. It is evident that for all admissible values of
𝛿, there is a significant proportion of extreme events in the interior of the MMT data manifold.

Fig. 18. Percentage of extreme events in the Lagrangian Turbulence dataset (see [15]), which lie in the interior of the manifold, as determined by Algorithm
1 for all 𝛿 ∈ [𝛿min , 𝛿max]. Extreme events are characterized as those further than 2 standard deviations away from the mean. It is evident that for all admissible
values of 𝛿, there is a significant proportion of extreme events in the interior of the Lagrangian Turbulence data manifold.
17 
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while for the MMT dataset (see Fig. 14), we get,

• diffusion_steps= 800
• noise_schedule= t anh 6, 1
• num_channels= 128
• num_res_blocks= 3
• channel_mult= 1, 1, 2, 3, 4
• attention_resolutions= 250, 125
• batch_size= 32
• learning_rate= 10−4

Finally, for the Lagrangian dataset (see Fig. 15), the hyperparameters that the authors in [15] used are,

• diffusion_steps= 800
• noise_schedule= t anh 6, 1
• num_channels= 128
• num_res_blocks= 3
• channel_mult= 1, 1, 2, 3, 4
• attention_resolutions= 250, 125
• batch_size= 256
• learning_rate= 10−4

Data availability

Data will be made available on request.
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