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Abstract. In a multi-fidelity setting, data are available under the same conditions from two

(or more) sources, e.g. computer codes, one being lower-fidelity but computationally cheaper, and

the other higher-fidelity and more expensive. This work studies for which low-fidelity outputs, one

should obtain high-fidelity outputs, if the goal is to estimate the probability density function of the

latter, especially when it comes to the distribution tails and extremes. It is suggested to approach

this problem from the perspective of the importance sampling of low-fidelity outputs according to

some proposal distribution, combined with special considerations for the distribution tails based on

extreme value theory. The notion of an optimal proposal distribution is introduced and investigated,

in both theory and simulations. The approach is motivated and illustrated with an application to

estimate the probability density function of record extremes of ship motions, obtained through two

computer codes of different fidelities.
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1. Introduction. In modeling physical phenomena, it is common to have several

models of varying fidelity and computational cost, with higher fidelity associated

with greater cost. In such multi-fidelity (MF, for short) settings, there has been

considerable effort by many researchers recently on how questions about a high-fidelity

output Y can exploit information about the corresponding low-fidelity output X.

Peherstorfer et al. [24] categorizes MF strategies into three types, each applicable

across various objectives: “adaptation”, where high-fidelity information is used to

enhance the lower-fidelity model [13, 14]; “fusion”, which involves the combined use

of multiple models [8, 21, 25]; and “filtering”, where the low-fidelity model is explored

to determine where to evaluate the high-fidelity model [20, 22, 25]. Some studies,

including some cited, can fall under multiple types. This paper considers the following

problem of the filtering and fusion types, described next starting with our motivation.

The application of our interest concerns modeling ship motions (and especially

their extremes) in Naval Architecture. The motions are considered for a ship in

irregular (random) waves, and will be driven by a random wave height ζ(t, x) at time

t and location x. Assuming for simplicity the case of head or following waves with

one-dimensional x, the commonly used Longuet-Higgins model postulates that

(1.1) ζ(t, x) =

Nw∑
n=1

an cos (knx− wnt+ εn),
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Fig. 1: Left: Heave motion for LAMP and SC. Right: LAMP versus SC heave record

maxima. The dashed line is the 45◦ line.

where wn > 0 form a set of typically equally spaced frequencies, kn are the so-called

wave numbers (e.g., kn = w2
n/g in deep water with the gravitational acceleration con-

stant g), and an > 0 are deterministic amplitudes (expressed through some spectrum

function evaluated at wn). The number of frequencies Nw is in the order of a few

hundreds. The only random components in (1.1) are the so-called random phases

εn taken as independent and uniformly distributed random variables on (0, 2π). See

[18] and [15]. In computer experiments, simulations are run with (1.1) for records

of certain length in time t (e.g., 30 minutes). Each record is thus associated with a

particular set of random phases {εn}Nw
n=1, or a particular random seed ω (not to be

confused with frequencies wn) used to generate εn = εn(ω), n = 1, . . . , Nw. Random

seeds can also be thought (and relabeled) as record numbers, i.e., 1, 2, 3 and so on.

Given the same random excitation (1.1) associated with some random seed or

record number, researchers in Naval Architecture use a range of computer codes to

generate ship motions and related quantities. For example, two such codes to be

referred to below are SimpleCode (SC; [35]) and Large Amplitude Motion Program

(LAMP; [17, 31]). The two codes differ in the underlying physics which is not relevant

for this work, with LAMP being higher fidelity. At the same time, SC is computa-

tionally more efficient: if a 30-minute record of ship motions takes about 2-3 seconds

to generate for SC, this time could be 15-20 minutes or longer for LAMP depending

on what outputs are sought.

The point to keep in mind is that LAMP and SC will generate different ship

motions even for the same excitation (1.1) or record number (random seed). Figure 1,

left plot, illustrates this for one of the ship motions, heave, over a time window of 100

secs; this is for a particular ship hull geometry, wave conditions, heading, and so on.

Figure 1, right plot, presents the scatterplot of heave maxima of LAMP and SC for

20 randomly selected records of 30-minute length each. Such data for many records

could be used to make statements about the occurrence of extremes. Viewing this

as a MF setting discussed above, the high-fidelity output Y = Y (ω) is the LAMP

record heave maximum, and the low-fidelity output X = X(ω) is the SC record heave
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Fig. 2: Left: LAMP versus SC heave record maxima including pairs of points corre-

sponding to SC records with 20 top and 20 bottom maxima heave records amongst

2,000. Right: LAMP versus SC roll record maxima including pairs of points cor-

responding to SC records with 20 top and 20 bottom maxima roll records amongst

2,000.

maximum, where ω is the same record number (random seed). The data presented

in Figure 1, right plot, would be denoted (X1, Y1), . . . , (X20, Y20), where (Xi, Yi) are

i.i.d. copies of (X,Y ).

In connection to extremes, we are interested in this work to estimate the high-

fidelity PDF (probability density function) of Y , denoted fY (y), and especially its

tails, leveraging additional data of the low-fidelity output X. Furthermore, as it is

computationally inexpensive to generate X, we assume that we can have much more

data for X than for Y . Importantly, note also that in the application setting described

above, X can be generated without the corresponding Y . This suggests that we may

be more selective for which values of X = X(ω), and hence their corresponding record

numbers (random seeds) ω, we should generate the corresponding expensive values

Y (ω). If the goal is estimating fY (y) further in the tails (larger and smaller y), and

if X and Y are strongly correlated, it would make sense to generate Y for larger and

smaller observed X’s (so that Y would potentially be larger and smaller). This idea

is illustrated in Figure 2. The left plot of the figure is a scatterplot akin to the right

plot of Figure 1 and contains the points of the latter under “rd” or “random” but

additional points are added as follows. 2,000 SC records are generated first. Among

these, 20 record numbers (and the corresponding random seeds) are identified having

20 largest record heave maxima among the 2,000 SC records. Then, LAMP records

are generated for these 20 record numbers and the corresponding LAMP/SC record

maxima pairs appear in the scatter plot as the “tt” or “(top) top 20” points. The

“tb” or “(top) bottom 20” points are obtained similarly but for 20 record numbers

with the smallest record maxima among the 2,000 SC records. Again, since the range

of Y -values is larger compared to random sampling, such selective sampling (we use

a more technical term and method “importance sampling” below) should be more

advantageous when using lower-fidelity X to inform inference about higher-fidelity Y .
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We also note that such benefit is expected if X and Y are strongly correlated. Strong

dependence is not necessarily guaranteed, even for the same record numbers (random

seeds). Figure 2, right plot, depicts an analogous scatterplot but for another motion,

roll, where the dependence between X and Y is weak.

With our goal and selective sampling procedures discussed above, we are inter-

ested in the following questions:

Q1: What is an optimal way to sample X-outputs (records) and generate the

corresponding Y -outputs, so that the estimation of the PDF fY (y) is best?

Q2: For potential sampling schemes, what are the estimators of the PDF fY (y)

in the first place? How does one quantify their statistical uncertainty?

Q3: Should estimation of the PDF be treated separately in the tails, where less

(or no) data are available, and how?

Though our application is in Naval Architecture, the framework and questions

presented above should be of interest in other MF settings where randomness under-

lies quantities of interest (QoI’s). A typical example is a PDE modeling a physical

phenomenon with uncertain parameters assumed to be random. A high-fidelity model

is a high-fidelity discretization of the PDE, while a low-fidelity model is its approxima-

tion, for example, using proper orthogonal decomposition or other surrogate approach.

Examples are many in related literature on MF methods for failure probabilities, con-

ditional value at risk (CVaR) and other QoI’s. CVaR is considered, for example, in

[11, 10], where PDEs with random parameters were for a convection-diffusion-reaction

problem and a heat problem (for a thermal fin) with certain temperature quantities

and their CVaR being of interest. MF estimation of a failure probability is considered,

for example, in [23] for the displacement of a cantilever beam assuming its length is

modeled by a random variable. As in this work, there is emphasis on distribution

tails in failure probability and CVaR. However, we are interested in the whole PDF

(rather than some fixed value associated with it) and our sampling methods involve

the lower-fidelity values themselves (rather than the underlying random variables,

usually low-dimensional). (Some recent work on MF estimation of the whole distri-

bution of QoI’s though is available; see [9]. Some recent work also considers sampling

issues in higher-dimensional setting, as sampling εn, n = 1, . . . , Nw, in (1.1) with Nw

in a few hundreds; see [26].)

Another notable MF setting with several computer codes (DNS, RANS) is model-

ing of turbulent flows. In some instances, one is similarly interested in the uncertainty

propagation of random input parameters on turbulence QoI’s; see, e.g., [33, 29]. Fi-

nally, we note that computer models are also considered with inherent randomness

(generating random response for fixed conditions and referred to as stochastic com-

puter models) where our methods could potentially be of interest; see, e.g., [16].

To answer the questions Q1–Q3 above, we work in a fairly general framework

described in more detail in section 2 where we also revisit the questions of interest

using its notation and explain key aspects of our approach. The methods behind our

approach are considered in section 3. In section 4, we extend our discussion to the

distribution tail based on the extreme value theory and section 5 further addresses

related issues of sampling and estimation. Data illustrations, in both simulations and

the ship application, can be found in section 6. Section 7 concludes.
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lo-fi X

hi-fi Y

X0,i

fX(x)

fY (y)

f̂Y (y) =?

pX(x)

xL xR

(Xi, Yi)

(Xi, Yi)

gX(x)

Fig. 3: Illustration of the framework and the notation of this work.

2. Setting with notation and key elements of approach. The setting mo-

tivated by the application of section 1 is as follows. The (real-valued) variables X

and Y will refer to the corresponding lower- and higher-fidelity outputs (e.g. motion

record maxima for SC and LAMP in our application). We shall sometimes write

“lo-fi” and “hi-fi” for lower-fidelity and higher-fidelity. The variable (X,Y ) can be

defined as a vector and can be viewed as X = X(ω), Y = Y (ω), where ω is a sample

point (random seed or record number in our application). Define

fX(x) : PDF of X (sampled at random),

fY (y) : target PDF of Y when X follows fX(x).
(2.1)

The PDF fY (y) is for Y sampled at random as well, but we describe it as in (2.1) for

better comparison below and to follow our application, where for such X (sampled

by fX(x)), there is a corresponding value of Y . We refer to fY (y) as the target PDF

because our ultimate goal is its estimation.

In practice, fX(x) could be estimated from:

X0,1, . . . , X0,N0
: data for estimation of fX(x).(2.2)

As X is associated with the less expensive low-fidelity outputs, the data (2.2) for

a large sample size N0 could in principle be generated, without the corresponding

outputs of Y . In Figure 2, one can think of N0 = 2, 000. In section 6 with numerical

studies, N0 ranges from 105 to around 107. For visual illustration, we will refer to

Figure 3, where the values of X0,i are marked on the horizontal lo-fi X axis, and a

hypothetical PDF fX(x) from which X0,i are sampled is added to the plot. Naturally,

there are more data points (marks) X0,i where the PDF is larger.

The PDF fX(x) will need to be used in our selective (importance) sampling

approach below. Note, however, that from the data (2.2), one can expect to estimate
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fX(x) well only over:

(xL, xR) : range of x to estimate fX(x).(2.3)

The larger N0, the larger (xL, xR) is expected. We marked this range qualitatively in

Figure 3 as well. We discuss the choice of xL, xR in subsection 5.3.1. For simplicity

of the argument, we shall suppose henceforth that the PDF fX(x) can be estimated

well enough so that it can be assumed to be known over this range, that is,

(xL, xR) : range of x to assume fX(x) is known.(2.4)

The PDF fX(x) is not assumed to be known outside the range (xL, xR).

Over the range (xL, xR) in (2.3), less data Xi can be resampled according to

another, so-called proposal PDF pX(x), xL < x < xR. In our application, we think

of Xi as sampled from {X0,i|X0,i ∈ (xL, xR)}. For the selected Xi, the corresponding

values of Yi can be obtained. In Figure 3, we depict a uniform PDF pX(x) and a few

points (Xi, Yi) sampled from this selective (importance) scheme. Summarizing, we

have

pX(x) : proposal PDF for x ∈ (xL, xR),

Xi ∈ (xL, xR) : sampled from X0,i according to pX(x),

Yi : the corresponding Y -values of Xi.

(2.5)

Again, the number of Xi’s should be much smaller than N0, since hi-fi Yi are now

generated as well. The purpose of pX(x) is to resample fewer X0,i’s while still covering

the observed range (xL, xR).

We would like to use the data Yi to estimate the target PDF fY (y). The PDF is

depicted in Figure 3 along the hi-fi Y -axis, with the question of what estimator f̂Y (y)

to take indicated as well. In the approach taken below, we will effectively rely on

a well-known and widely used kernel-based PDF estimator with suitable importance

weights. It will be important that fX(x) is assumed to be known for x ∈ (xL, xR) as in

(2.4), since both pX(x) and fX(x) will define the importance weights for x ∈ (xL, xR);

see (3.6)–(3.7) below.

There is one additional important element that we want to bring to the discussion

above. Note that we thus far excluded from our discussion any outputs X0,i ≥ xR or

X0,i ≤ xL. These outputs, however, potentially carry a very useful information about

extremes of X and, if X and Y are strongly dependent, also about extremes of Y .

See Figure 2. In fact, we would like to work with a proposal PDF gX(x) that samples

(ideally all) extreme outputs X0,i. Such density will be constructed in section 3 below.

It is noted in Figure 3 along one point (Xi, Yi) with the largest Xi. Summarizing and

introducing another notation:

gX(x) : proposal PDF for the whole range of x,

X1, . . . , XN : sampled from X0,i according to gX(x), including

extremes of X0,i,

gY (y) : PDF of Y when X follows gX(x).

(2.6)

Again, we think of N in (2.6) as being much smaller than N0 in (2.2).

With the introduced notation, the questions of section 1 can be rephrased as:
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Q1: What pX(x) should be taken? Is there an optimal way to do so?

Q2: How is the estimator f̂Y (y) of fY (y) defined?

Q3: What is the difference between pX(x) and gX(x)? How are the tails of fY (y)

estimated?

We address these questions in sections 3 and 4 below. In some of our developments

in section 3, we shall assume that X and Y are related through one of the following

cases:

Homoscedastic : Y = m(X) + σϵ,(2.7)

Heteroscedastic : Y = m(X) + σ(X)ϵ,(2.8)

where ϵ has mean 0, variance 1 and is independent of X. The most general bivariate

relationship between (X,Y ) can be expressed as Y = m(X)+η with m(X) = E(Y |X)

and η = Y −m(X) having mean 0. But note that (2.8) does not capture this most

general form since not every η can be expressed as σ(X)ϵ, with ϵ independent of X.

Remark 2.1. We look at (2.7) or (2.8) as a “first-order” model where interesting

relationship between Y and X is captured through the mean function m(x). Other

interesting scenarios exist but will not be considered here. For example, m(x) could

take one of two different function values m1(x) and m2(x), sampled according to some

mixture distribution.

3. Methods.

3.1. Importance sampling scheme and target PDF estimator. Recall

the notation (2.1)–(2.6) in section 2. Motivated by the discussion in that section, we

suggest to take the proposal PDF gX(x) in (2.6) as

gX(x) =


cL

fX(x)

P(X ≤ xL)
, if x ≤ xL,

c0 pX(x), if xL < x < xR,

cR
fX(x)

P(X ≥ xR)
, if x ≥ xR,

=


cL fX(x|X ≤ xL), if x ≤ xL,

c0 pX(x), if xL < x < xR,

cR fX(x|X ≥ xR), if x ≥ xR,

(3.1)

where 0 < cL, c0, cR < 1 and cL + c0 + cR = 1, and fX(x|A) denotes the PDF

conditioned on event A.

Several comments regarding (3.1) are in place. The choice of cL, c0, cR ensures

that gX(x) is a PDF, i.e., it is positive and integrates to 1. It also means that when

sampling N observations from (3.1), about NcL of the observations should come from

x ≤ xL, Nc0 from xL < x < xR, and NcR from x ≥ xR. The form of gX(x) for x ≤ xL

and x ≥ xR is motivated by the discussion in section 2: for example, for x ≤ xL, it

means effectively that all the observations X0,i with X0,i ≤ xL can be included in the

sample selected according to (3.1). This is desired as motivated in section 2; see also

Figure 3. Indeed, the presence of fX(x) in (3.1) means that we sample at random as

we did with X0,i. We just need to make sure that xL is chosen so that there will be
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about NcL observations X0,i with X0,i ≤ xL. As there are about N0 P(X ≤ xL) such

X0,i observations, this will be achieved when

NcL = N0 P(X ≤ xL).(3.2)

In practical terms, letting X0,1:N0 ≤ X0,2:N0 ≤ · · · ≤ X0,N0:N0 be the order statistics

of X0,i, the relation (3.2) holds with

xL = X0,rL:N0
, rL = NcL.(3.3)

Similarly, to include all observations X0,i with X0,i ≥ xR in the importance sample,

we need

NcR = N0 P(X ≥ xR),(3.4)

and in practical terms,

xR = X0,(N0−rR+1):N0
, rR = NcR.(3.5)

Though we present rL, rR as resulting from N, cL, cR, one could fix rL, rR in practice,

which for fixed N , would determine cL, cR. We discuss further the choice of rL, rR in

section 5 below. The choice of the PDF pX(x) in (3.1) is considered in subsection 3.2.

How we sample from pX(x) to obtain one of the observationsX0,i with xL < X0,i < xR

is explained in section 5.

If X1, . . . , XN denote the sample from the proposal PDF gX(x), e.g. that in (3.1),

and Y1, . . . , YN are the corresponding values of Y , a natural kernel-based estimator

of fY (y) is then

(3.6) f̂Y (y) =
1

N

N∑
i=1

Kh(y − Yi)w(Xi),

where Kh(u) = h−1K(h−1u) for a kernel function K and bandwidth h > 0, and the

weight function w(x) is given by

(3.7) w(x) =
fX(x)

gX(x)
.

For gX(x) in (3.1), the weight function is

(3.8) w(x) =



1

cL
P(X ≤ xL), if x ≤ xL,

1

c0

fX(x)

pX(x)
, if xL < x < xR,

1

cR
P(X ≥ xR), if x ≥ xR.

The kernel function K is assumed to integrate to 1, that is,
∫
K(u)du = 1. In practice,

we work with the Gaussian kernel K(u) = ϕ(u), where ϕ is the standard normal

density function. On several occasions below, we should refer to the localization

property of the kernel function K, which states that
∫
G(z)Kh(y − z)dz ≃ G(y) as
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h → 0, for a function G(z) continuous at z = y [6]. For example, this implies that

Ew(X)Kh(y − Y ) =
∫
w(x)f(x, z)Kh(y − z)dxdz ≃

∫
w(x)f(x, y)dx, where f(x, y) is

the joint PDF of (X,Y ).

The importance sampling weight function (3.7) involves the PDF fX(x) on xL <

x < xR and the exceedance probabilities P(X ≤ xL) and P(X ≥ xR). The other

quantities (cL, c0, cR, pX(x), xL, xR) are chosen by the user. As noted around

(2.4), we assume effectively that fX(x), xL < x < xR is estimated well enough to be

assumed as known. We shall assume the same about P(X ≤ xL) and P(X ≥ xR).

These issues are considered further in subsection 5.3.1.

Finally, we note that the statistical uncertainty of f̂Y (y) in (3.6) can be charac-

terized in a straightforward way through

Var(f̂Y (y)) =
1

N
Var(Kh(y − Y )w(X))

=
1

N
E(Kh(y − Y )2w(X)2)− 1

N
(EKh(y − Y )w(X))2.

(3.9)

The quantity in the parentheses of the second term in (3.9) can be estimated by

(3.6). Similarly, for the first term, the expected value can be estimated through

(1/N)
∑N

i=1 Kh(y − Yi)
2w(Xi)

2.

3.2. Optimality of proposal PDF. We are interested here in the selection of

the proposal PDF pX(x), xL < x < xR, in (3.1) and (3.6)–(3.7). By considering the

homoscedastic case (2.7) without the noise ϵ in subsection 3.2.1, we propose the notion

of optimality for this selection. This choice is then examined for the homoscedastic

case with noise in subsection 3.2.2 and the heteroscedastic case in subsection 3.2.3.

3.2.1. Noiseless homoscedastic case. We consider here the case (2.7) with

σ = 0, that is,

(3.10) Y = m(X).

We ask what an optimal pX(x) would be in this hypothetical scenario (see also Re-

mark 3.2 below) in terms of the variablility of f̂Y (y) in (3.12). We consider below

two cases: monotone m and piecewise monotone m. We assume implicitly that m is

differentiable where it is monotone.

Monotone m: Consider the case of monotone increasing and differentiable m in

(3.10). We have

(3.11) fY (y) =
fX(m−1(y))

m′(m−1(y))
.

The analogous expression relates gY and gX . For these PDFs, recall the definition in

(2.1) and (2.6). Observe further as in (3.9) that

NVar(f̂Y (y)) = Var
(
Kh(y − Y )w(X)

)
= EKh(y − Y )2w(X)2 − (EKh(y − Y )w(X))2.

(3.12)
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For the second term in (3.12), by using the localization property of the kernel function

discussed in subsection 3.1, as h→ 0,

EKh(y − Y )w(X) = EKh(y − Y )w(m−1(Y ))

≃ gY (y)w(m
−1(y)) = gY (y)

fX(m−1(y))

gX(m−1(y))
=

fX(m−1(y))

m′(m−1(y))
= fY (y),

where we used (3.11) twice, with gY , gX first and then with fY , fX . Similarly, for

the first term in (3.12), by setting ∥K∥22 =
∫
R K(u)2du and considering the kernel

function K2(u) = K(u)2/∥K∥22,

EKh(y − Y )2w(X)2 =
∥K∥22
h

EK2,h(y − Y )w(m−1(Y ))2

≃ ∥K∥
2
2

h
gY (y)w(m

−1(y))2 =
∥K∥22
h

gY (y)
fX(m−1(y))2

gX(m−1(y))2
(3.13)

=
∥K∥22
h

fX(m−1(y))2

gX(m−1(y))m′(m−1(y))
=
∥K∥22
h

fY (y)
2m

′(m−1(y))

gX(m−1(y))
.

Thus, with sufficiently small h, the following approximation can be derived:

(3.14)
NVar(f̂Y (y))

fY (y)2
≃ ∥K∥

2
2

h

m′(m−1(y))

gX(m−1(y))
− 1.

When gX is set to be the PDF fX , this becomes

NVar(f̂Y (y))

fY (y)2
≃ ∥K∥

2
2

h

1

fY (y)
− 1,(3.15)

by using (3.11). That is, the normalized variance will typically be larger in the

distribution tails, where fY (y) is smaller. (A separate but related issue is whether

one has data of Y in the tails in the first place; this issue should be kept in mind in

subsequent developments.)

The notion of optimality that we adopt is to require that the variance of the

estimator f̂Y (y), relative to fY (y), is constant across y. As optimality concerns the

proposal PDF pX(x) defined for xL < x < xR, we consider m(xL) < y < m(xR).

That is, we seek:

(3.16) Optimality :
NVar(f̂Y (y))

fY (y)2
≃ const, m(xL) < y < m(xR).

In view of (3.14), the optimality translates into m′(m−1(y))/gX(m−1(y)) being con-

stant or

(3.17) gX(x) ∝ m′(x), xL < x < xR.

Since gX(x) ∝ pX(x) for xL < x < xR, this translates into:

(3.18)

Optimal proposal PDF : pX(x) = Cm′(x) =
m′(x)

m(xR)−m(xL)
, xL < x < xR.
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Example 3.1. If m(x) = ax, the optimal pX in (3.18) is pX(x) = 1/(xR − xL),

x ∈ (xL, xR), that is, it is uniform on (xL, xR). We remark that uniform sampling is

optimal in our criteria for linear relationships.

Remark 3.2. We emphasize again that the setting (3.10) is hypothetical, serving

as a means to investigate what an optimal choice of pX could be therein. The suggested

optimal choice of pX is investigated in more realistic scenarios in subsections 3.2.2

and 3.2.3. We note that (3.10) is trivial as far as the main goal of estimating fY
goes since (3.11) provides an exact relation to get it from fX (which we assume to be

known for xL < x < xR).

Remark 3.3. Assuming gX(x) = pX(x) for simplicity, the proposed optimal PDF

in (3.18) ensures the constant relative variance in (3.14) as: for m(xL) < y < m(xR),

Var(f̂Y (y))

fY (y)2
≃ ∥K∥

2
2 (m(xR)−m(xL))

Nh
− 1

N
.(3.19)

Note that there is no guarantee a priori that the constant on the right-hand side of

(3.19) is small. But the constant can be made as small as desired by choosing large

enough N , that is, sampling sufficiently many data points.

Remark 3.4. Another interpretation of the optimality criterion (3.18) is to con-

sider the integrated (relative) error, namely, in view of (3.14), the quantity∫ m(xR)

m(xL)

m′(m−1(y))

gX(m−1(y))
dy =

∫ xR

xL

(m′(x))2

gX(x)
dx.(3.20)

What density gX minimizes (3.20)? If one is willing to assume smoothness of gX , the

Euler-Lagrange equation (with the Lagrange multiplier for the density constraint)

leads to gX satisfying: for some constant C,

− (m′(x))2

gX(x)2
+ C = 0,(3.21)

that is, gX(x) ∝ m′(x) as in our optimality criterion (3.17). While considering (3.20)

leads to the same optimality criterion, there may be other interesting criteria to

consider based on different objectives.

Piecewise monotone m: The arguments above extend easily to the case of

piecewise monotone m. For such m, we partition (xL, xR) into intervals {Aj}nj=1 so

that, when m is restricted to Aj , the resulting function mj : Aj 7→ R is monotone.

Let (yL, yR) be the (interior) range of m on (xL, xR). For the developments below,

we need to assume that the values of m(x) are outside the range (yL, yR) where

x ≤ xL or x ≥ xR. When larger values of y are expected for larger values of x, this

effectively assume that m(x) ≥ m(xR) for x ≥ xR and similarly for x ≤ xL. Under

the assumptions above, note that

(3.22) fY (y) =

n∑
j=1

fX(m−1
j (y))

|m′(m−1
j (y))|

1(y ∈ m(Aj)), yL < y < yR,
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where 1(y ∈ B) is the indicator function for a set B. The analogous relation holds for

gY and gX replacing fY and fX . Then, by arguing as in (3.13) above, one has that

(3.23) EKh(y − Y )2w(X)2 ≃ ∥K∥
2
2

h

n∑
j=1

fX(m−1
j (y))2

gX(m−1
j (y))|m′(m−1

j (y))|
1(y ∈ m(Aj)),

for yL < y < yR. When will this be proportional to fY (y)
2? In view of (3.22), one

can achieve the desired optimality relationship (3.16) by requiring

gX(m−1
j (y)) ∝

fX(m−1
j (y))

fY (y)
, y ∈ m(Aj), j = 1, . . . , n,

or, equivalently,

(3.24) gX(x) ∝ fX(x)

fY (m(x))
, xL < x < xR.

In the monotone case n = 1, fY (y) = fX(x)/|m′(x)| and we find that gX(x) ∝ |m′(x)|
as in (3.17). Since gX(x) ∝ pX(x), xL < x < xR, we propose to require:

(3.25) Optimal proposal PDF : pX(x) ∝ fX(x)

fY (m(x))
, xL < x < xR,

where fY is given by (3.22).

Example 3.5. Let m(x) = x2, xL = −1, xR = 1 and fX(x) = c, x ∈ (−1, 1) (i.e.
X is uniformly distributed on (−1, 1) when conditioned to this interval). m is clearly

not monotone but is monotone on the intervals A1 = (−1, 0] and A2 = (0, 1). The

range of m over (−1, 1) is [0, 1) and hence (yL, yR) = (0, 1). Let m1 and m2 be the

functions obtained by restricting m to these intervals, A1 and A2 respectively. For

any y ∈ (0, 1), |m′(m−1
1 (y))| = |m′(m−1

2 (y))| = 2
√
y. It follows that

fY (y) =
fX(m−1

1 (y))

|m′(m−1
1 (y))|

+
fX(m−1

2 (y))

|m′(m−1
2 (y))|

=
c

2
√
y
+

c

2
√
y
=

c
√
y
, 0 < y < 1.

Thus, the relation (3.25) becomes

pX(x) ∝ fX(x)

fY (m(x))
=

c

c/|x|
= |x|, −1 < x < 1.

This has the behavior we expect: the optimal proposal prefers points closer to the

boundary of the support of X, which are lower probability points for Y . See also the

remark below.

Example 3.6. Let xL = −3, xR = 3, fX ∼ N (0, 1) and

m(x) =


18(x+ 1.2) + 12 if x ≤ −1.2,

−10x, if − 1.2 < x ≤ 1.2,

18(x− 1.2)− 12, if x > 1.2.

Here, the monotone function m1,m2,m3 are linear and defined on intervals A1 =

(−3,−1.2], A2 = (−1.2, 1.2], A3 = (1.2, 3) respectively. For every value in the range
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−12 < y < 12, there is xi such that xi = m−1
i (y) ∈ Ai for i = 1, 2, 3. Given the

relation (3.25) and the fact that fX is standard normal, among x1, x2, and x3, the

point x2 will have a higher value in the proposal PDF since the denominators are

the same and x2 is closer to the peak of fX . This example is further explored in

section 6. Observing the panel labeled “m2, known m” in Figure 5, it is evident that

for −12 < y < 12, most x-values are sampled in the central linear region. Note that

the weight assigned to the obtained sample will be as in (3.8) and, when combined

with (3.25), it results in w(x) ∝ fY (m(x)). Thus, regardless if sample values come

from A1, A2, or A3, their contributions to f̂Y in (3.6) will be the same. Figure 6b

confirms that the target density estimation using the optimal proposal PDF performs

well.

Remark 3.7. For monotone m, the suggested form of the proposal PDF pX(x) is

given by (3.18). This suggests that the favored regions for sampling are determined

by the rate of change of Y with respect to X. That is, if the change in Y with respect

to X is slight, a small sample from that region would be sufficient to estimate the

distribution of Y . Conversely, if the change in Y in relation to X is abrupt, a higher

sampling rate is necessary to accurately estimate the distribution of Y .

3.2.2. Homoscedastic case. In the case (2.7) with σ > 0, many of the argu-

ments above could be repeated but the resulting expressions do not allow for a closed

form solution as in (3.17). We shall indicate instead what the optimal choice (3.17)

entails in the case (2.7) when σ > 0. Assume first monotone increasing m. Let

Ỹ = m(X)

so that Y = Ỹ + σϵ, and

fY (y) =

∫
fỸ (y − z)

1

σ
fϵ(

z

σ
)dz,

where fỸ and fϵ are the PDFs of Ỹ and ϵ, respectively.

For the second term in the variance (3.12), we have

EKh(y − Y )w(X) ≃
∫

w(x)f(x, y)dx

=

∫
w(x)f(y|x)gX(x)dx =

∫
f(y|x)fX(x)dx = fY (y),

where f(x, y) and f(y|x) refer to the joint and conditional PDFs, respectively. For

the first term in the variance (3.12), arguing similarly as in the noiseless case (the

asymptotic relation ≃ in (3.13)), we have

EKh(y−Y )2w(X)2 =
∥K∥2

2

h EK2,h(y−Y )w(X)2 =
∥K∥2

2

h E
(
E(K2,h(y−σϵ−Ỹ )w(X)2|ϵ)

)
≃ ∥K∥

2
2

h
E
(
gỸ (y − σϵ)w(m−1(y − σϵ))2

)
=
∥K∥22
h

E
(
fỸ (y − σϵ)2

m′(m−1(y − σϵ))

gX(m−1(y − σϵ))

)
.

If the optimal choice (3.17) is used, this becomes

EKh(y − Y )2w(X)2 ≃ C
∥K∥22
h

EfỸ (y − σϵ)2



14 M. KIM, K. O’CONNOR, V. PIPIRAS, T. SAPSIS

and hence

(3.26)
NVar(f̂Y (y))

fY (y)2
≃ C
∥K∥22
h

EfỸ (y − σϵ)2

fY (y)2
− 1.

Note that

EfỸ (y − σϵ)2

fY (y)2
=

∫
fỸ (y − z)2 1

σfϵ(
z
σ )dz

(
∫
fỸ (y − z) 1σfϵ(

z
σ )dz)

2
(3.27)

describes quantitatively the deviation of (3.26) from being constant over y. The

smaller σ is, the smaller this deviation is.

The formula (3.26) generalizes easily to the case of piecewise monotone m over a

partition {Ai}ni=1 of (xL, xR), as considered in connection to (3.24). Indeed, we have

as in (3.23),

E
(
K2,h(y − σϵ− Ỹ )w(X)2

∣∣∣ϵ) ≃ n∑
j=1

fX(m−1
j (y − σϵ))21(y − σϵ ∈ m(Aj))

gX(m−1
j (y − σϵ))|m′(m−1

j (y − σϵ))|
.

Plugging in gX(x) = C−1fX(x)/fỸ (m(x)) from (3.24) leads to

EKh(y − Y )2w(X)2 =
C∥K∥22

h
E

n∑
j=1

fỸ (y − σϵ)fX(m−1
j (y − σϵ))21(y − σϵ ∈ m(Aj))

fX(m−1
j (y − σϵ))|m′(m−1

j (y − σϵ))|

=
C∥K∥22

h
EfỸ (y − σϵ)

n∑
j=1

fX(m−1
j (y − σϵ))

|m′(m−1
j (y − σϵ))|

1(y − σϵ ∈ m(Aj))

=
C∥K∥22

h
EfỸ (y − σϵ)2.

Thus,

(3.28)
NVar(f̂Y (y))

fY (y)2
≃ C∥K∥22

h

EfỸ (y − σϵ)2

fY (y)2
− 1,

which agrees with (3.26) when m is monotone.

3.2.3. Heteroscedastic case. We suggest to think of the heteroscedastic case

(2.8) in more practical terms, namely, as the problem of variance stabilization through

a traditional Box-Cox transformation. For example, if m(x) > 0, 1 + ϵ > 0 and

σ(x) = m(x), then

(3.29) log Y = logm(X) + log(1 + ϵ) =: m̃(X) + η̃

allows one to fall back to the homoscedastic case (2.7). We explore here the implica-

tions of such transformations on our problem of interest.

More generally, suppose that

(3.30) Z := τp(Y ) =

{
Y p−1

p , p > 0

log Y, p = 0

}
= m̃(X) + η̃,
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where τp(y) is the Box-Cox transformation. (Note that this assumes implicitly that

Y > 0.) The choice p = 0 is considered in (3.29) and corresponds to Y = eZ =

em̃(X)eη̃ = em̃(X)Eeη̃ + em̃(X)(eη̃ − Eeη̃), that is, the heteroscedastic case m(x) =

em̃(X)Eeη̃ and σ(x) ∝ m(x). For p = 1/k, k ∈ N, it follows from (3.30) that

Y = (pZ+1)1/p = (pm̃(X)+1+pη̃)1/p = (m̄(X)+ η̄)k = m̄(X)k+km̄(X)k−1η̄+ . . . ,

where m̄(x) = pm̃(x) + 1 and η̄ = pη̃. This case corresponds approximately to the

heteroscedastic case

(3.31) m(x) = m̄(x)k = (pm̃(x)+1)1/p, σ(x) ∝ m̄(x)k−1 = m(x)1−1/k = m(x)1−p.

E.g., for p = 1/2, σ(x) ∝ m(x)1/2.

It is interesting to examine the effect of the transformation (3.30) on our choice

of optimal proposal density (3.18). Continuing with the above case p = 1/k, k ∈ N,
note that (3.31) implies that

m̃(x) =
m(x)p − 1

p
= τp(m(x))

and that the optimal gX is

(3.32) pX(x) ∝ m̃′(x) ∝ m(x)p−1, xL < x < xR.

Example 3.8. For p = 1/2, m(x) = x, σ(x) ∝ x1/2, the choice (3.32) yields

pX(x) ∝ x−1/2. In contrast, without the transformation in the homogeneous case of

this example, pX(x) ∝ 1.

Another issue in the heteroscedastic case is what density is exactly estimated (fY
or fZ), and through what method. The discussion above involves a transformation to

go from Y to Z, and subsequent optimality refers to estimating fZ as in (3.6), that

is,

(3.33) f̂Z(z) =
1

N

N∑
i=1

Kh(z − Zi)w(Xi).

As fY (y) = τ ′p(y)fZ(τp(y)), on one hand, it is natural to set

(3.34) f̂Y (y) = τ ′p(y)f̂Z(τp(y)).

Note that with this choice,

(3.35)
Var(f̂Y (y))

fY (y)2
=

Var(f̂Z(τp(y)))

fZ(τp(y))2
.

So, for example, if the right-hand side of (3.35) is (nearly) constant, then so is the

left-hand side.

On the other hand, we also note that the estimator (3.34) is close to a kernel-based
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estimator of fY obtained directly from Yi in the following sense. Indeed,

1

N

N∑
i=1

Kh(y − Yi)w(Xi) =
1

N

N∑
i=1

Kh

(
y − τ−1

p (Zi)
)
w(Xi)

=
1

N

N∑
i=1

Kh

(
τ−1
p (τp(y))− τ−1

p (Zi)
)
w(Xi)

≃ 1

N

N∑
i=1

Kh

(
(τ−1

p )′(τp(y))(τp(y)− Zi)
)
w(Xi)

= τ ′p(y)
1

N

N∑
i=1

Khτ ′
p(y)

(τp(y)− Zi)w(Xi)

or

1

N

N∑
i=1

Kh/τ ′
p(y)

(y − Yi)w(Xi) ≃ τ ′p(y)f̂Z(τp(y)).

That is, one can think of the estimator (3.34) as the kernel-based estimator of fY (y)

but using a location-dependent bandwidth.

4. Modified estimator for target PDF tails. The estimator f̂Y (y) in (3.6)

is defined for any y in principle. As with the estimation of fX discussed in section 2

and subsection 5.3.1, however, the estimator f̂Y (y) is expected to be meaningful

only for y ∈ (yL, yR) and suitable yL, yR. For example, one could naturally expect

mini=1,...,N Yi ≤ yL and yR ≤ maxi=1,...,N Yi. We discuss the choice of yL, yR in

subsection 5.3.1 and also in connection to the presentation below, in subsection 5.3.2.

We consider here a natural way to estimate fY (y) beyond the thresholds yL and yR.

The idea is to exploit the so-called second extreme value theorem, or the Pickands-

Balkema-De Haan theorem, stating that (essentially) any distribution above high

enough threshold can be approximated by the generalized Pareto distribution (GPD).

See, for example, [3] and [5]. Motivated by this observation, we define our final

estimator of the target PDF fY (y) as

(4.1) f̂
(m)
Y (y) =


ĉ′R · gξ̂R,β̂R

(y − yR), if y ≥ yR,

f̂Y (y), if yL < y < yR,

ĉ′L · gξ̂L,β̂L
(−(y − yL)), if y ≤ yL.

Here, f̂Y (y) is given by (3.6), ĉ′L and ĉ′R are normalizing constants, and gξ,β(u) is the

PDF of GPD given by

(4.2) gξ,β(u) =



1

β
(1 +

ξu

β
)−

1
ξ−1, u > 0, if ξ > 0,

1

β
e−

u
β , u > 0, if ξ = 0,

1

β
(1 +

ξu

β
)−

1
ξ−1, 0 < u < −β

ξ
, if ξ < 0,

where ξ and β are the shape and scale parameters. The GPD parameter estimates

ξ̂R, β̂R in (4.1) are based on the data Yi > yR, and ξ̂L, β̂L on the data Yi < yL.
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In practice, we use maximum likelihood estimation and, more precisely, its weighted

version, since Yi’s are obtained from importance sampling. The importance sampling

weights are given by w(Xi) with w(x) defined in (3.8). Additionally, we use

(4.3) ĉ′R = P̂(Y ≥ yR) =
1

N

N∑
i=1

1(Yi ≥ yR)w(Xi),

and analogously for ĉ′L as the normalizing constants. Since ĉ′L, ĉ
′
R and f̂Y (y) in (4.1)

are estimates, the estimator (4.1) need not integrate exactly to one. Thus, additional

normalization can be applied if needed. Numerical illustrations are postponed till

section 6.

5. Related sampling and estimation issues. We first introduce a sampling

algorithm based on the proposal PDF (3.1) in subsection 5.1. We then discuss the es-

timation of the mean function in subsection 5.2, followed by the selection of thresholds

in subsection 5.3.

5.1. Sampling low-fidelity outputs by proposal PDF. We discuss here

how to sample N pairs (Xi, Yi) based on the distribution gX proposed in (3.1). As

X represents the less expensive low-fidelity outputs, we first generate the set X0 =

{X0,1, . . . , X0,N0
} through N0 distinct random seeds. This set X0 serves two primary

purposes: it provides a baseline set of X values upon which further sampling can be

applied, and it enables the generation of the corresponding Y values, since eachX0,i in

X0 is linked to a specific random seed that can be used to produce its Y counterpart.

To sample N values from gX , we refer to the discussion in subsection 3.1. Specif-

ically, we expect about rL sample points in (−∞, xL], rR sample points in [xR,∞),

and the rest in (xL, xR). Also, we define xL as the smallest rLth order statistic from

X0 as in (3.3) and similarly for xR in (3.5). Accordingly, we include all X0,i values

where X0,i ≤ xL, and analogously for X0,i ≥ xR. For the range xL < X < xR, we

first sample N − rL − rR values from pX , and then pick the nearest neighbor from

X0 without replacement. As a result, we are able to sample N values of X from

X0, which allows for the generation of the corresponding Y values via the shared

underlying random seed. The procedure is summarized in Algorithm 5.1.

Algorithm 5.1 Sampling Strategy from Proposal PDF (3.1)

Input: initial parameters N0, N , rL, rR
1: sample X0,1, . . . , X0,N0

from fX
2: determine xL = X0,rL:N0

, xR = X0,(N0−rR+1):N0

3: sample N−rL−rR points from pX , find the nearest neighbor in {X0,1, . . . , X0,N0}
without replacement, and store these values as XrL+1, . . . , XN−rR

4: obtain {X1, . . . , XN} = {X0,i:N0
, i ≤ rL}∪{Xi, rL + 1 ≤ i ≤ N −

rR}∪{X0,i:N0
, i ≥ N0 − rL + 1}

5: sample Yi given X = Xi

Output: Sample (X1, Y1), . . . , (XN , YN ).

5.2. Estimation of mean function. As discussed in subsection 3.2, the pro-

posal PDF pX is constructed using both the mean function m and the PDF fX .
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However, since m is not commonly known in practice, our sampling scheme should

be adapted to include its estimation. This section elaborates on how we modify our

sampling scheme to progressively learn and update estimates of m and pX .

To begin our sampling scheme, we need to obtain an initial estimate of m, denoted

as m̂(0). To do this, we start by obtaining a small initial set of (X−1, Y−1), . . . ,

(X−n0 , Y−n0), where X is sampled uniformly within the range (xL, xR). Note that

the sampling follows analogously the procedure in subsection 5.1. Then, we propose

to use piecewise linear regression (PLR) explained in more detail below to derive an

estimate for m that best fits this data. The rest of our sampling scheme is iterative in

nature. At iteration t, given that we have m̂(t−1), we estimate p̂X based on (3.25) using

the plug-in estimator m̂(t−1). We then draw a new Xt from p̂X and its corresponding

Yt. Then, we obtain m̂(t) using the updated dataset. This process is repeated until we

collect the desired sample of size Ñ , i.e., t = 1, . . . , Ñ . In particular, when estimating

the target PDF fY , the initial n0 data points are excluded.

Regarding the specifics of estimating m, we employ piecewise linear regression

(PLR), which presents several advantages. PLR ensures monotonicity within each seg-

ment, allowing for straightforward computations of inverse functions and derivatives.

To be specific, suppose that the resulting monotone components are {m̂1, . . . , m̂J}.
Each component m̂j is linear and defined over the interval Aj = (x(j), x(j+1)). The

points (x(j), y(j)) serve as breakpoints for these piecewise linear segments, such that

x(1) = xL, x(J+1) = xR, x(j) ≤ x(j+1), and y(j) = m̂j(x(j)) for all j. Consequently,

for x(j) ≤ x ≤ x(j+1), the equation for m̂(x) is given by

(5.1) m̂(x) =

(
x(j+1) − x

x(j+1) − x(j)

)
y(j) +

(
x− x(j)

x(j+1) − x(j)

)
y(j+1).

Then, we can derive the quantities needed for (3.22) as

(5.2) m̂−1
j (y) =

(y − y(j+1))(x(j+1) − x(j))

y(j+1) − y(j)
+ x(j+1) and m̂′

j(x) =
y(j+1) − y(j)

x(j+1) − x(j)
.

In our numerical studies in section 6, we utilized the R package segmented to obtain

PLR [19]. This package allows for PLR fitting by specifying the number of break

points. By evaluating the Akaike information criterion (AIC) for each model with the

varying number of break points, we selected the one with the lowest AIC to determine

the optimal number of break points as the best-fitted model.

Once an estimate m̂ of m is obtained from the observed sample, we draw addi-

tional data points according to p̂X . If the estimated m̂ is monotone, the CDF of our

proposal PDF p̂X , denoted as P̂X , is proportional to m̂, i.e., P̂X(x) ∝ m̂(x). Using

inverse transform sampling, we can then sample X as P̂−1
X (U), where U ∼ Unif(0, 1),

which simply involves random sampling from uniform distribution. When m̂ is piece-

wise monotone, sampling techniques such as Metropolis-Hastings or inverse transform

sampling can be used (e.g., [30]).

Our sampling procedure incorporating the estimation of m is summarized in Al-

gorithm 5.2. For illustration, Figure 4 further presents the samples obtained from the

proposal PDF pX using Algorithm 5.1 with known m (left) and from the adaptive

sampling via Algorithm 5.2 with unknown m alongside with the final fitted PLR lines
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Algorithm 5.2 Adaptive Sampling Incorprating m Estimation

Input: PDF fX , thresholds xL and xR

1: sample (Xi, Yi) where Xi ∼ Unif(xL, xR) for i = −1, . . . ,−n0

2: construct D(0) = {(Xi, Yi), i = −1, . . . ,−n0}
3: fit piecewise linear regression (PLR) to D(0) to obtain the initial estimate m̂(0)

and its monotone components {m̂j,0, j ∈ J (0)}
4: for t = 1, . . . , Ñ do

5: f̂
(t)

Ỹ
(y)←

∑
j∈J (t−1)

fX(m̂−1
j,t−1(y))

|m̂′
j,t−1(m̂

−1
j,t−1(y))|

1(y ∈ m̂(t)(Aj))

6: p̂
(t)
X (x)← fX(x)

f̂
(t)

Ỹ
(m̂(t−1)(x))

▷ construct p̂X

7: normalize p̂
(t)
X on xL < x < xR

8: sample (Xt, Yt) where Xt ∼ p̂
(t)
X ▷ sample new point

9: w(Xt)← fX(Xt)

p̂
(t)
X (Xt)

▷ update weights

10: update D(t) = {(X−n0
, Y−n0

), . . . , (X−1, Y−1), (X1, Y1), . . . , (Xt, Yt)}
11: fit PLR to D(t) to obtain m̂(t) and its monotone components {m̂j,t, j ∈ J (t)}
12: end for

Output: Sample (X1, Y1), . . . , (XÑ , YÑ ).

Fig. 4: Left: Sample obtained from the proposal PDF pX with known m (Algo-

rithm 5.1) and the true m curve. Right: Sample obtained from the adaptive sampling

(Algorithm 5.2) and the final fitted PLR curve.

(right). The thresholds xL and xR are indicated by the red vertical dashed lines in

the figure.

Remark 5.1. While this section mainly introduced PLR for function approxima-

tion, other methods like Gaussian process regression (GPR) and nonparametric kernel

regression are also applicable (e.g., [28, 34]). Focusing on GPR, when m is assumed

to have a prior distribution characterized by mean function m0 and a positive semi-

definite covariance function k, one writes m ∼ GP(m0, k), implying that for any

n-dimensional input vector x ∈ Rn,

m(x) ∼ N (m0(x), k(x,x)).
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Given independent errors σϵ from (2.7) following aN (0, σ2) distribution, and observed

values X = (X1, . . . , Xt) and Y = (Y1, . . . , Yt), we have:

m|X,Y ∼ GP(m∗, k∗),

where

m∗(x) = m0(x) + k(x,X)
(
k(X,X) + σ2It

)−1

(Y −m0(X)),(5.3)

k∗(x, x̃) = k(x, x̃)− k(x,X)
(
k(X,X) + σ2It

)−1

k(X, x̃),(5.4)

where It is an t×t identity matrix. This conjugacy enables GPR to consistently update

the mean function with each new observation. Furthermore, derivative functions are

readily accessible without additional computational cost, making GPR an appealing

alternative.

Remark 5.2. Note that thus far, we treated the distribution of Y -values as being

equally important over its range. In some applications, however, the interest and

relevance might be greater for one of the distribution tails, for example, the right

tail associated with larger Y -values. We cannot completely decouple the sampling

of X-values across the two distribution tails as, a priori, larger Y -values could also

result from smaller X-values, especially in the case when the correlation between

X and Y is not strong. But if there is indication for strong correlation (as after

the preliminary step of Algorithm 5.2 having n0 data points (Xi, Yi)), note that our

subsequent sampling procedure could accommodate the situation where the emphasis

is placed on one tail only. For example, the left tail could be de-emphasized by

choosing cL < cR in (3.1), and we could similarly reweigh the resulting density pX(x),

so that more weight is put on larger X-values.

5.3. Selection of thresholds.

5.3.1. Range for kernel-based estimation of PDF. We assumed in subsec-

tion 3.1 that the thresholds xL, xR are given defining the range (xL, xR) where the

PDF fX(x) can be estimated well, say through the kernel-based estimator

f̂X(x) =
1

N0

N0∑
i=1

Kh(x−X0,i).(5.5)

Furthermore, as in (3.3) and (3.5), we formulated the threshold selection as that of

rL and rR in the order statistics as xL = X0,rL:N0
and xR = X0,(N0−rR+1):N0

. In this

section, we ask what rL and rR (or, xL and xR) should be taken in practice. Put

differently, for example in connection to rR, up to what largest value of X0,i, could

one expect that f̂X(x) estimates fX(x) well?

Note that the same question is also relevant for the weighted kernel-based density

estimator f̂Y (y) in (3.6) in view of the modified estimator f̂
(m)
Y (y) in (4.1) and the

selection of thresholds yL, yR. Furthermore, the choice of yL, yR here is connected

not only to the range (yL, yR) for the estimation of f̂Y (y) but also to the use of

GPD beyond the two thresholds. The latter issue is discussed in subsection 5.3.2

below. There is though also a difference in the role played by f̂X(x) and f̂Y (y) in our
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approach: while we seek (xL, xR) where f̂X(x) can effectively replace fX(x), this is

not quite the goal with f̂Y (y) and f̂
(m)
Y (y) which are viewed as estimators with certain

uncertainty properties. For this reason, we will focus on the question raised for f̂X(x)

and then make some comments concerning f̂Y (y).

The question above concerning f̂X(x) seems rather basic but we are not aware of

previous works addressing it directly. Addressing it here fully goes beyond the scope

of this study. In fact, we shall restrict our discussion to making a few related points

and more practical recommendations. We shall consider a related but slightly simpler

question, for example concerning the right tail of the distribution, on how large xR

(or rR) one can take so that the empirical tail probability

(5.6) ̂̄FX(xR) =
1

N0

N0∑
i=1

1(X0,i > xR)

estimates the true tail probability F̄ (xR) = P(X > xR) well. The first discussion

below can be adapted for f̂X(x) but we are not aware if this has been done for f̂X(x)

with the second discussion below.

First, the question above about ̂̄FX(xR) can be addressed through the following

more informal argument. Note that the variance of the estimator is given by

Var( ̂̄FX(xR)) =
1

N0
P(X > xR)(1− P(X > xR)).(5.7)

Then, the variance relative to the tail probability is approximately in the tail:

Var( ̂̄FX(xR))

F̄X(xR)2
=

1

N0

1− P(X > xR)

P(X > xR)
≃ 1

N0 P(X > xR)
≃ 1

rR
,(5.8)

where rR is the number of observations X0,i > xR. This suggests that the relative

variance could be made small practically speaking when rR = 10 or larger. In our

numerical studies in subsections 6.1 and 6.2, we use rR = 25.

Second, the informal argument above can be put on a more solid footing as follows.

We can similarly seek to understand the behavior of

F̄X(X0,(N0−r+1):N0
)̂̄FX(X0,(N0−r+1):N0
)
=

N0

r − 1
F̄X(X0,(N0−r+1):N0

).(5.9)

As FX(X) is a uniform random variable U on (0, 1), note that F̄X(X0,(N0−r+1):N0
) is

the order statistic Ur:N0
. It is known (e.g., [1]) that

Ur:N0
∼ Beta(r,N0 + 1− r),(5.10)

where Beta(·, ·) denotes the Beta distribution. It follows that

F̄X(X0,(N0−r+1):N0
)̂̄FX(X0,(N0−r+1):N0
)
∼ N0

r − 1
Beta(r,N0 + 1− r) =: ξN0,r.(5.11)

Observe that

EξN0,r =
N0

r − 1

r

N0 + 1
, Var(ξN0,r) =

(
N0

r − 1

)2
r(N0 + 1− r)

(N0 + 1)2(N0 + 2)
.(5.12)
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As r is increasing, Var(ξN0,r) is decreasing and EξN0,r approaches 1 (for large N0),

showing that the ratio in (5.9) will tend to be closer to 1 as well. Furthermore, for

any r, the ratio in (5.9) has bounded variability.

We have explored similar questions numerically for the weighted kernel-based

estimator f̂Y (y) in (3.6). We similarly found that taking, for example, rth largest

value for the upper bound yR of the estimation range seemed to control variability,

though a deeper study would also be warranted.

5.3.2. Generalized Pareto fit. Note that for the modified estimator in (4.1),

for example, yR is not only the upper bound up to which to use f̂Y (y), but also the

threshold above which to fit the GPD. From the latter perspective, the threshold

selection is a well-studied problem in extreme value theory. The methods range from

more ad hoc (e.g., [3], Section 4.3.1) to more sophisticated (e.g., [4]). They are not

the focus of this study. In our numerical studies, we use a fixed number of observation

above threshold across different replications.

6. Numerical studies. This section presents a simulation study and an appli-

cation to evaluate the performance of the proposed methods. Subsection 6.1 contains

results for some representative cases, followed by further discussion in subsection 6.2

on several related points. The reproducible R code for the presented simulations is

available at https://github.com/mjkim1001/MFsampling. Subsection 6.3 contains an

application to ship motions.

6.1. Illustrations for several informative cases. In this section, we pres-

ent numerical illustrations of the proposed density estimators and sampling schemes

through a set of informative cases. We present mean functions mi for three distinct

scenarios, i = 1, 2, 3, each representing a different type of relationship: m1 corre-

sponds to a monotone relation, m2 to a piecewise monotone relation, and m3, which

involves an exponential function, is used to exemplify a heteroscedastic relation. The

mean functions are as follows:

m1(x) = 3x,

m2(x) =


18(x+ 1.2) + 12 if x ≤ −1.2,

−10x, if − 1.2 < x ≤ 1.2,

18(x− 1.2)− 12, if x > 1.2,

m3(x) = ex/2.

For examining the piecewise monotone and heteroscedastic scenarios, we generate

X from a certain normal distribution. On the other hand, to assess the monotone

scenario, we generate X according to the density

fh
X(x) =


Ce

1
2x−6, if x ≤ −4,

Ce−
1
2x

2

, if − 4 < x ≤ 4,

Ce−
1
2x−6, if x > 4,

where C is a normalizing constant. This distribution is constructed to follow a normal

distribution at the center and to have heavier tails at the extremes. The distributions

of ship motions tend to have such shape (e.g., [2]). Another rationale behind this

https://github.com/mjkim1001/MFsampling


LOW-FIDELITY SAMPLES FOR HIGH-FIDELITY DENSITY ESTIMATION 23

Fig. 5: Mean functions m, their PLR estimates, and the samples obtained via Algo-

rithm 5.1 (known m) and Algorithm 5.2 (PLR).

Table 1: Settings and parameters for each mean function in the density estimation.

m scenario fX σ(x) N0 N rL rR h

m1 Homoscedastic fh
X 6 6 · 106 150 25 25 3

m2 Homoscedastic N (0, 1) 6 106 150 25 25 3

m3 Heteroscedastic N (5, 1) 1
6e

x/2 106 150 25 25 0.15

design is to induce curvature changes at the distribution tails, as can be seen in

Figure 6a. This allows investigating how well each estimator captures these variations

at the tails and understanding the role of GPD thresholds.

Figure 5 depicts the mean functions m and their corresponding PLR estimates.

The specific settings and parameters associated with each mean function are given

in Table 1. Based on these settings, the figure presents the results of obtaining

N = 150 data points sampled from the proposal PDF with both known m through

Algorithm 5.1 and PLR estimates via Algorithm 5.2. This offers insights into how

the drawn samples are distributed. The red dashed lines in the figure indicate the

thresholds xL and xR. For the heteroscedastic case, Figure 5 depicts the obtained

samples of the variable Y (labeled as “m3 - Y”) and the transformed variable Z =

log(Y ) (labeled as “m3 - Z”), as discussed in subsection 3.2.3. The points for Y are

sampled as if the relation was homoscedastic.

Figure 6 compares various sampling strategies and the estimated density results

under the settings given in Table 1, repeated 100 times. Black points (lines) represent
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(a) Monotone scenario (m1)

(b) Piecewise monotone scenario (m2)

(c) Heteroscedastic scenario (m3)

Fig. 6: Estimated versus true log-PDF over 100 realizations for various sampling

strategies.
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the density estimates over the observed range from the smallest to largest value Yi,

while blue points correspond to the density estimates computed (extended) beyond

this range. The true log density values are marked by red lines, while green dashed

lines indicate the 25th smallest and largest Y observations, which also serve as the

thresholds for the GPD fitting when the modified estimator is used. Throughout

this section, we use the following terms in the labels to denote the distinct sampling

strategies: “random” represents results from random sampling of Y ; “optimal” and

“PLR” show results obtained using the optimal proposal PDF via Algorithm 5.1 and

Algorithm 5.2, respectively; any label with “modified” signifies the use of the GPD

fit in the tail, as discussed in section 4. In Figure 6, labels with “- N” or “- N0” refer

to the sample size used to compute the estimator. If not specifically indicated, the

results are based on a sample size of N observations.

For Figure 6a, which concerns the monotone function m1, the following observa-

tions can be made:

• Using our proposal PDF in (3.1), we considerably widen the observed sample

range and the range where the target PDF is estimated reasonably well. This

is also evident when contrasting the green dashed lines in “random - N” and

“optimal - N” panels.

• Even with a substantially larger sample size N0, kernel density estimation is

challenging in the tails due to data scarcity, as observed in “random - N0”. In

regions with little or no data, the estimates tend to conform to the shape of

the kernel, in our case Gaussian, which is parabolic on the log scale. For our

kernel density estimation in (3.6), both the “optimal” and “PLR” estimates

also take the Gaussian kernel shape in the far tails, particularly outside the

observed range.

• The modified estimator in (4.1) successfully recovers the distribution tail

beyond the observed data, as in “modified - N” or “PLR modified - N” panels.

From the true density curve for m1, note a curvature change around y = ±30.
For GPD fitting to work well, thresholds must be set beyond these points. A

more detailed discussion on this can be found in subsection 6.2.1.

For m1, our optimal, modified, and PLR estimates approximate well the true density

curve and accurately capture the curvature changes in the distribution tails. Further

discussion on the optimality of the choice of pX is postponed to subsection 6.2.2.

Figure 6b provides results for the piecewise monotone function m2. Many of the

observations for Figure 6a apply for Figure 6b as well. Here, a noticeable curvature

change occurs around y = ±30 for the true density curve. The GPD fits start beyond

these thresholds, capturing the distribution tail.

Figure 6c presents results for the heteroscedastic scenario associated with m3. We

compare the “random - N”, “optimal - N”, and “modified - N” estimators across two

distinct schemes. The first-row panels, labeled “m3”, follow the approaches used in

Figures 6a and 6b, treating the scenario as homoscedastic. In contrast, the second-

row panels, denoted “m3 - transformed”, adhere to the procedures outlined in sub-

section 3.2.3. Here, we first transform the variable to Z = log(Y ), and subsequently

estimate fZ via (3.33). The resulting estimators for fZ are expected to exhibit similar

behaviors seen in earlier homoscedastic cases. We then compute f̂Y using (3.34). The
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Fig. 7: Comparison of estimated log-PDF for m1 across different N0 sizes.

“optimal - N” density estimate showcases improved performance achieved through

this transformation, especially evident in the right distribution tail. The “modified

- N” estimator also demonstrates its ability to capture the shape of the distribution

tail.

6.2. Discussion of other points.

6.2.1. Role of N0 and usefulness of GPD. In our setup, N0 needs to be

chosen first. This parameter is important for two main reasons: firstly, it dictates the

range where the target PDF could reliably be estimated; and secondly, it affects the

GPD threshold and potential usefulness of GPD. Figure 7 compares the performance

of “optimal” and “modified” results for m1 with N0 = 105 and N0 = 6 · 106, while
keeping N = 150 in both scenarios. The results show that a larger N0 widens the

range for reliable estimation. Moreover, when examining the “modified” results for

the two N0 values, it is evident that a smaller N0 leads to GPD fitting for too small

thresholds, failing to capture the curvature changes in the distribution tails. This

indicates that GPD fitting with inadequate N0 may not yield any benefits, as it does

not accurately represent tail behavior. Choosing a suitable threshold for GPD fitting

is arguably a delicate issue that should ideally be based on the underlying “physics”

of the studied phenomenon (e.g., [27]).

6.2.2. Optimality illustration. In subsection 3.2, we proposed the concept

of optimality as described in (3.16). Based on this definition, our optimal pX was

derived to ensure that the scaled variance of the density estimator is approximately

constant within the GPD thresholds under the noiseless setting (3.10). Figure 8 offers

a visual illustration of this, showing the log of the empirical scaled variance for m1

and m3 under noiseless and homoscedastic scenarios. The settings for all scenarios

are described in Table 2. We note that m3 is now used with homoscedastic errors, in

contrast to subsection 6.1 which employed the heteroscedastic scenario.

In Figure 8, the “optimal” and “modified” methods yield identical estimators,

represented by the black solid line, in the middle range within the GPD thresholds,

marked by the green dashed lines. They diverge beyond the GPD thresholds, with

the modified estimator exhibiting lower variance. To compare against the optimal pX ,

we have included the case when pX is the uniform density on the interval (xL, xR),
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Fig. 8: Log of scaled variance for m1 (top) and m3 (bottom) under noiseless (left)

and homoscedastic (right) settings.

Table 2: Settings and parameters for each mean function in the optimality illustration.

m scenario fX σ(x) N0 N rL rR h

m1 Homoscedastic fh
X 6 6 · 106 150 25 25 3

m1 Noiseless fh
X 0 106 150 25 25 0.5

m3 Homoscedastic N (5, 1) 6 106 150 25 25 3

m3 Noiseless N (5, 1) 0 106 150 25 25 1.5

which is labeled as “uniform”. All curves are plotted only over the ranges where data

are observed, since the estimates tend to be unreliable beyond this range, as shown

in Figure 6. For the case of random sampling, labeled “random”, we note that the

scaled variance is small around the center; however, increases rapidly moving away

from the center. Compared to the “random” case, our optimal pX performs more

consistently over a wider range, particularly in the distribution tails. In the noiseless

setting, as expected from our optimality criterion, our results confirm that the scaled

variance for the optimal proposal PDF remains approximately constant within the

GPD thresholds.

When comparing the “uniform” and “optimal” approaches under homoscedastic

noise settings, we first note that uniform sampling is the best strategy for linear rela-

tionships according to our optimality criterion (see Example 3.1). Consequently, we

observed similar performance levels between the two approaches for the linear model

m1. To better highlight the differences, we examined the exponential function m3

under homoscedastic noise setting. As seen from Figure 5, the exponential relation-

ship with m3 shows more evident nonlinearity, for which we expect our “optimal”

sampling strategy to be beneficial. Indeed, we observe that the “optimal” (or equiv-
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Fig. 9: Comparison of estimated log-PDF for m1 (top) and m3 (bottom) between

“modified” and “uniform” methods.

alently “modified”) sampling strategy exhibits a lower scaled variance towards the

right distribution tails compared to the “uniform” approach within the green dashed

lines. The density estimation results for these settings are also illustrated in Figure 9,

showcasing comparisons across “modified” and “uniform” approaches in both noise-

less and homoscedastic scenarios for m1 and m3. The variability also appears visually

smaller for the “modified” approach.

6.3. Application to ship motions. We illustrate here the considered approach

in the ship motion application discussed in section 1. As in the left plot of Figure 1,

we focus on LAMP/SC ship motions but consider the pitch motion for the same

ship in head seas, 10 kts speed and other conditions that are of little importance to

understanding the illustration. We consider LAMP/SC pitch record maxima Y/X

and are interested in estimating the LAMP pitch record maximum PDF fY (y). To

apply the importace sampling approach, we first generate N0 = 100, 000 SC records.

The histogram and estimated density of these SC pitch record maxima X = X0,i, i =

1, . . . , N0, are depicted in Figure 10, left plot. This PDF is estimated using kernel

smoothing with a bandwidth of 0.2.

Having the estimate of the PDF fX(x), we need to decide on the proposal PDF

pX(x). In general, Algorithm 5.2 can be employed for incorporating both mean func-

tion estimation and sampling. In our specific application, we proceed with a uniform

proposal PDF between rL = 50 smallest and rR = 50 largest values (xL, xR) (no-

tably optimal when the mean function is linear). The proposal PDF is used to choose

N = 200 SC records and generate the associated LAMP record values. The right

plot of Figure 10 depicts a scatter plot of the sampled values, obtained using Algo-

rithm 5.1. This plot shows a (roughly) linear relationship between LAMP and SC
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Fig. 10: Left: Histogram and PDF of SC pitch record maxima based on 100,000

observations. Right: The scatter plot of LAMP/SC pitch record maxima obtained

via Algorithm 5.1 with “uniform” pX .

outputs, supporting our choice of the uniform PDF on the interval (xL, xR).

We are now equipped to estimate the target PDF fY (y) through the importance

sampling estimator (3.6) and the modified estimator (4.1). The resulting density esti-

mates are presented in Figure 11, labeled as “uniform” and “modified”, respectively.

As in the simulations above, the estimates beyond the data range are depicted in

blue. For the kernel density estimates, we chose a bandwidth of h = 0.4. Regarding

the modified estimator, we set the GPD thresholds by selecting extreme observa-

tions among the Y values: the left threshold is set at the 55th smallest, and the

right threshold at the 30th largest observation. The estimated GPD parameters are

(ξ̂L, β̂L) = (−0.4766, 0.4192) for the left tail and (ξ̂R, β̂R) = (−0.2104, 0.4464) for the
right tail.

In addition to the density estimates, we have included approximate 95% confi-

dence intervals in the plot. To have non-negative density estimates, we employ the

delta method for constructing confidence intervals on the log-transformed estimates.

To be specific, for the kernel density estimate, we approximate the 100(1− α)% con-

fidence interval for log f̂Y (y) as

(6.1) log f̂Y (y)± z1−α
2

√
V̂ar(f̂Y (y))

f̂Y (y)2
,

where z1−α
2
= Φ−1(1− α

2 ) corresponds the upper 1−
α
2 percentile of the standard nor-

mal distribution, and V̂ar(f̂Y (y)) is obtained based on (3.9). The confidence interval

for f̂Y (y) is then obtained by exponentiating this interval.

When implementing the modified estimator, the central part of the distribution

employs the kernel density estimate, and we use (6.1) for the confidence interval.

However, for the tails of the distribution, the density of a given target above the

threshold is defined by the product of the probability of exceeding a threshold (4.3)

and the PDF of GPD (4.2). For instance, the right tail estimate is ĉ′R · gξ̂R,β̂R
(y− yR)

in (4.1). Assuming these two values are independent, the 100(1 − α)% confidence
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Fig. 11: Log of estimated PDF fY (y) with approximated 95% confidence interval

when using “modified” and “uniform” approaches.

interval for this term is derived by calculating the 100
√
1− α% confidence interval for

each component term and multiplying the respective endpoints of these intervals.

Similar to the variance calculation for f̂Y (y) in (3.9), the variance of ĉ′R is given

by

Var(ĉ′R) =
1

N
Var(1(Y > yR)w(X))

=
1

N
E(1(Y > yR)w(X)2)− 1

N
(E1(Y > yR)w(X))2.

(6.2)

The 100
√
1− α% confidence interval for ĉ′R is approximated as

(6.3) exp

log ĉ′R ± z 1+
√

1−α
2

√
V̂ar(ĉ′R)

ĉ′2R

 ,

where V̂ar(ĉ′R) is estimated based on (6.2) using empirical quantities. On the other

hand, for the PDF of GPD, ML estimators ξ̂ and β̂ are computed from the sample

Y1, . . . , Yr, which consists of r observations exceeding the specified threshold. Accord-

ing to [32], the large sample asymptotics of the ML estimators are given by

(6.4)
√
r

(
ξ̂ − ξ0
β̂ − β0

)
d→ N (0,W−1),

where ξ0 and β0 are the true values and

(6.5) W−1 =

(
1 + ξ0 −β0

−β0 2β2
0

)
.

We note that (6.4) holds only when ξ > −1/2. In our practical application, we

adjusted the choice of GPD threholds to ensure the parameters satisfy this condi-

tion. Once the ML estimators (ξ̂, β̂) are obtained, we independently draw 100 data



LOW-FIDELITY SAMPLES FOR HIGH-FIDELITY DENSITY ESTIMATION 31

points, (ξ̂b, β̂b), b = 1, . . . , 100, from the asymptotic distribution (6.4), replacing the

true values ξ0 and β0 with ξ̂ and β̂. Then, in this parametric bootstrap approach,

the 100
√
1− α% confidence interval is approximated through the sample quantiles of

gξ̂b,β̂b
(y), b = 1, . . . , 100. For other methods to set confidence intervals, see [7].

While the estimates for the “modified” and “uniform” approaches coincide be-

tween the GPD thresholds, we note from Figure 10 that they are quite different in

the distribution tails. The “modified” estimate, in particular, suggests lighter tails

than the “uniform” estimate. As discussed in subsection 5.3.1, we would not rely on

the latter approach beyond observed data depicted in blue in the figure.

7. Conclusions. In this work, we proposed an importance sampling framework

for choosing low-fidelity outputs to generate the corresponding high-fidelity outputs

and to estimate their PDF, with the emphasis on the tails. At the center of our analysis

lied the notion of optimal proposal PDF for importance sampling. The proposed

approach performed well in simulations and was illustrated on an application.

Several problems related to this work could be studied in the future. We noted

in section 1 that other approaches would seek importance sampling schemes for the

underlying random components of the system of interest, that is, the variable εn, n =

1, . . . , Nw, in (1.1) for our application. In higher dimensions (large Nw as in our

application), this is a challenging problem and when approaches to tackle it become

better developed, our method should be compared to them in terms of performance.

Moreover, incorporating costs of low- and high-fidelity outputs and considering more

than two sources of data, as explored by [9, 12, 25] and others, present another

interesting direction.
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