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Abstract. As a result of climate change, extreme weather events have increased in severity and frequency,5
making the rapid modeling of potential climate scenarios all the more essential for future resource6
management and planning. However, the broad range of dynamically relevant spatiotemporal scales7
in the atmosphere makes direct numerical simulations computationally expensive and simplified8
reduced-order approaches less accurate. Scientific machine learning (ML) methods are a promis-9
ing alternative, but given the inherent limited representation of extreme events, comprehensive or10
well-specified training data sets are necessary for model generalizability. To avoid time-consuming11
learning brought about by large data sets, we use a model-agnostic active learning approach to se-12
quentially select an optimal subset of the most valuable data points for model training. Points are13
iteratively scored via a likelihood-weighted uncertainty sampling acquisition function which priori-14
tizes points that reduce model uncertainty and improve prediction in the tails of the distribution,15
i.e. most relevant to the dynamics of extreme events. We first validate the method on a well-studied16
problem, quantifying the maximum wave magnitude statistics in a synthetic turbulent system. Then,17
we apply the method to a real-world problem, learning a debiasing operator for coarse-resolution18
climate simulations. In both cases, the likelihood-weighted active data selection algorithm most ac-19
curately reproduces the extreme event statistics using a fraction of the original data points. Looking20
forward, the approach is useful for improved environmental sampling schemes, and can be used as a21
compression algorithm that preserves information associated with extreme events in vast data sets.22
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1. Introduction. Climate change is increasing the frequency and severity of extreme26

weather events such as week-long heatwaves and major rainfall episodes [21, 15]. These events27

are leading to significant damage to critical infrastructure and numerous premature deaths,28

and most extremes are occurring in low latitude tropical regions with high population density29

[46]. To better prepare for and mitigate these catastrophic events, some of which are breaking30

records by three or more standard deviations, there is a need for high-resolution models that31

explore the outcomes of different possible greenhouse gas emission scenarios [44, 4, 14, 53].32

Historically, researchers have used numerical solvers based on physical equations to emulate33

climate systems [54, 30, 31, 57, 13, 51, 51, 17]. However, the dynamics can be highly turbulent34

and involve spatial resolutions ranging from millimeters on the Kolmogorov dissipation scale35

to tens of thousands of kilometers on the global scale. Numerical solvers require significant36

computational resources, extensive parameter tuning, and complicated closure terms.37

Machine Learning (ML) models provide a useful alternative for traditional computationally38

∗Submitted to the editors September 3, 2024.
Funding: The work was funded through the AFOSR Award FA9550-23-1-0517. BC was supported through the

National Science Foundation Graduate Research Fellowship (Grant No. 2141064).
†Department of Mechanical Engineering and Center for Ocean Engineering, Massachusetts Institute of Technol-

ogy, Cambridge, MA (bchamp@mit.edu, sapsis@mit.edu)

1

This manuscript is for review purposes only.

mailto:bchamp@mit.edu
mailto:sapsis@mit.edu
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expensive and complex numerical solvers. Progress in the speed and capability of computers,39

combined with new ML architectures and algorithms, has improved our ability to create40

models of highly nonlinear and high-dimensional systems. As a result, significant research has41

been done on leveraging ML for climate and weather modeling [42, 40, 43, 24, 50, 33, 5, 9,42

3, 10, 41, 25]. However, ML remains challenging and expensive when applied to applications43

for which the available data sets are large and high-dimensional. In many problems, not44

all points carry the same value of information, so it can be inefficient or ineffective to use45

the entire data set. For some physical systems, certain dynamical mechanisms might be46

represented by an imbalanced number of samples. Namely, in a system such as the climate,47

extreme weather events, events in the tails of the probability density function (PDF), are48

an important example of such dynamics [48]. To achieve adequate representation of these49

events and understand their relationship to the system, it is often necessary to collect large50

amounts of data consisting of nearly repetitive, and thus unnecessary, points. These data sets51

become even larger for problems in high dimensions. Standard neural network (NN) models52

— typically trained with mean squared error (MSE) — give emphasis to regions of the domain53

where most points exist, so predictions are worse for phenomena in the tails. This discrepancy54

is often manifested through slow convergence and bad generalizability properties of ML models55

with respect to observables that highlight the statistics of extremes [36]. Therefore, identifying56

a subset of data points most relevant to the dynamics of extreme weather events can reduce57

model training time while more accurately representing the distribution of the original data.58

To overcome the challenges associated with training an ML model given a large data set,59

we present an adaptation of the active learning framework for effective training data selection.60

Our active selection framework, introduced in Section 2, is well-suited for systems with extreme61

events because it quantifies the value of data using a likelihood-weighted uncertainty sampling62

acquisition (scoring) function [47, 6, 49]. One requirement of the acquisition function is63

knowledge of epistemic uncertainty, so we provide an overview of probabilistic ML architecture64

with uncertainty quantification (UQ) capabilities in Section 2.3. In Section 2.4, we explain65

how to apply the framework to systems with high-dimensional functional inputs. In Sections66

3 and 4, we demonstrate the proposed methodology for two applications: i) prediction of67

extreme events in the Majda-McLaughlin-Tabak (MMT) model, a one-dimensional model for68

dispersive wave turbulence and ii) a correction operator for coarse-resolution climate model69

outputs. In both examples, we introduce methods to interpret the optimal points and gain70

insights into the active selection algorithm.71

Overall, we show how our method is able to i) identify the points in a large data set that72

carry the most valuable information for predicting a specific quantity of interest, ii) reduce the73

cost of training ML models by using only the most valuable data, iii) improve generalizability74

properties of the resulting ML models with emphasis on their capacity to capture extreme75

events, iv) interpret the optimally selected data. One important advantage of the method is76

that it is model agnostic, so it can be used on any forthcoming ML-based climate model.77

2. Data Selection with Active Learning. Active Learning (AL) is a form of supervised78

ML in which new points are sequentially chosen to be added to the training set according to79

a criterion called the acquisition function [28, 11, 18] . Ren et al. provides a survey of AL80

in the context of ML classification models [45]. AL is part of the same family of algorithms81
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as Bayesian experimental design (BED) and Bayesian optimization (BO), algorithms that82

sequentially select the next-best point. However, we adapt the AL algorithm for the case83

where the new points must be selected from a preexisting, precomputed data set rather than84

from a continuous domain [39, 52, 2]. This distinction is sometimes referred to as active85

search, greedy approximations, optimal sampling, or active sampling, but we will refer to it86

as active data selection or active selection (AS).87

2.1. Active Data Selection Algorithm. The AS algorithm (illustrated in Figure 1) is88

initialized with a small training set consisting of points randomly selected from the set of all89

candidate points. During each iteration, the model is trained and the acquisition function is90

evaluated at all remaining candidate training points. To compute the acquisition function, we91

make use of the predictions for the mean and epistemic uncertainty made by the probabilistic92

model. Candidate points resulting in the maximum value of the acquisition function are93

considered optimal, and they are added, as a batch, to the training set. Further details on94

batching are explained in [35]. The loop is repeated until the model error converges, or until95

the error reaches a desired threshold. The output of the algorithm is a ML model that has96

been trained with optimally selected data. At each iteration, the selected input points can be97

further analyzed to provide insights into what types of data are most useful for modeling.98
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Figure 1. Active Data Selection Algorithm. Points are sequentially selected according to the acquisition
function and added to the training set to improve model prediction. The output of the algorithm is a model that
has been trained on an optimal subset of the data with respect to predicting the statistics of extreme events.

2.2. Acquisition Function: Likelihood-Weighted Uncertainty Sampling. The key ele-99

ment of the active data selection algorithm is the acquisition function which selects the most100

valuable points for model training. The choice of the acquisition function can depend on101

the nature of the system (e.g. nonlinear, high-dimensional, etc.), the goal of the modeling102

problem (e.g. optimization, extreme event identification, etc.), and many other constraints103

(e.g. computational costs, etc.). In general, the acquisition function should strike a balance104

between exploration and exploitation. In the most basic case of uncertainty sampling (US),105
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the acquisition function is the epistemic variance.106

(2.1) qUS(X) = σ2(X)107

A modified version of uncertainty sampling (input-weighted) prioritizes points that have a108

higher chance of occurring by multiplying the epistemic variance by the probability of the109

input points.110

(2.2) qUS(X) = σ2(X)px(X)111

However, input-weighted criteria do not take into account the expected output and therefore112

do not account for the importance of extreme events. Here we choose to use a likelihood-113

weighted uncertainty sampling (LW-US) criterion to sequentially select optimal training points114

and quantify the value of points in the data set. The key idea behind the LW-US acquisition115

function is to pick input points that are likely to occur and reduce uncertainty, but also to116

take into account points that are likely to lead to extreme outputs. Acquisition functions that117

take into consideration the output were first introduced in [32] and further improved in [47]118

for applications to problems with high dimensional input spaces. In the original formulation,119

the function considers the integrated absolute difference between the log of the distribution120

of the prediction y0 and the log of the distribution of a perturbed prediction y+ made from a121

model perturbed in the direction of most uncertainty.122

(2.3) DLog1(y||y0;h) =
∫
Sy

∣∣log py+(y)− log py0(y)
∣∣ dy123

For a bounded domain Sy and a candidate sample point h, this acquisition function asymp-124

totically converges to the desired output statistics, even in regions with low probability of125

occurrence [49]. However, the function is expensive to compute, and its lack of smooth gra-126

dients makes it unsuitable for gradient-based optimization. Instead, we use an upper bound127

(derived in [47]), which has a lower cost of computation and is analytically differentiable128

(2.4) qLW-US(X) =

∫
Sx

σ2(X)
px(X)

py(y(X))
129

In this modified version of the LW-US acquisition function, the epistemic variance σ2(X) is130

multiplied by the probability of the input points px(X) and divided by the probability of the131

output points py(y(X)) to prioritize candidate points that have the potential to reduce the132

model uncertainty, have a high chance of occurring, and most importantly, result in extreme133

events. Overall, these points are better able to represent of the tails of the distribution.134

The criterion can also serve as a “scoring” function because it gives priority to data points135

with the highest “value” with respect to improving the statistics of a specific observable (e.g.136

minimizing the error in the probability density function).137

We measure success in terms of minimizing the error in the tails of the PDF, and we138

benchmark our method against a Monte Carlo (MC) acquisition function which selects points139

at random from the available candidate training points. MC is a meaningful benchmark140

because it is standard practice in many ML applications to randomly select a subset of data141
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for training and validation. A useful loss function to evaluate the quality of our model is the142

log-PDF error (LPE) which measures the integrated difference between the log of the true143

PDF obtained from the true y and the log of the estimated PDF obtained from the prediction144

ŷ.145

(2.5) LPE =

∫
| log py(y)− log pŷ(ŷ)|dy146

This loss function is similar to the Kullback–Leibler divergence, but it more heavily penal-147

izes errors in the tails of the distribution because the metric is not weighted by the output148

distribution py(y).149

2.3. Probabilistic Model: Ensemble of Neural Networks. The acquisition function re-150

quires an estimate for the epistemic uncertainty of the model. In previous works, traditional151

Bayesian supervised learning methods such as Bayesian regression or Gaussian process re-152

gression have been used to quantify uncertainty for optimal sampling [47, 7, 6, 58]. However,153

these methods are limited: Bayesian regression can fail when modeling nonlinear systems while154

Gaussian process regression suffers from performance issues on high dimensional or large data155

sets. NN-based ML architectures that can quantify uncertainty are able to overcome these156

problems [34, 22, 19, 62, 37, 63, 26]. We will focus on ensembles of neural networks (E-NN)157

and dropout neural networks (D-NN), but other methods to create a heuristic measure for158

uncertainty are summarized in [1]. In the E-NN, multiple models with the same architecture159

and hyperparameters are trained with the same training data sets but with different random160

weight initialization. The resulting prediction ŷ is the mean of the n NN predictions ŷi161

(2.6) ŷ(X) =
1

n

n∑
i=1

ŷi(X)162

where ŷi is the prediction of the ith NN of the ensemble. The model uncertainty can be163

quantified via the variance of the predictions164

(2.7) σ2(X) =
1

n

n∑
i=1

(ŷi(X)− ŷ(X))2165

resulting in a probabilistic prediction. In a D-NN, only one model is trained, but the model166

includes dropout layers [55]. During the prediction step, multiple predictions are made with167

different randomly dropped nodes [16]. Again, the resulting prediction is the mean of all the168

predictions, and the variance of the predictions can be used to create a probabilistic prediction.169

The dropout layers require additional training time, but only one model is trained, so the170

overall computation time is lower for the D-NN.171

2.4. Application to Functional Inputs: Dimensionality Reduction. While the framework172

is versatile, we explain how to apply it to an output which depends on a functional — a map-173

ping from a (possibly infinite-dimensional) space to a real number. In the MMT application174

in Section 3, the functional maps the high-dimensional initial conditions to the maximum175

wave amplitude reached over the given time horizon. In the climate modeling application in176
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Section 4, the functional maps the high-dimensional field consisting of temperature, humidity,177

and wind speed fields over the globe to a target quantity of interest, such as, for example,178

temperature at one spatial location. The challenge of using likelihood-weighted AS for a func-179

tional with a complicated input is that there may not be a straightforward or cost-effective180

way to compute px(X).181

2.4.1. Weighted Principal Component Analysis. In the applications we consider, the182

functional inputs are infinite or high-dimensional, so we first reduce the dimensionality by183

performing weighted principal component analysis (PCA). The spatial weights w(ξ) depend184

on the problem of interest. For MMT, the weight is trivial w(ξ) = 1, so we perform standard185

principal component analysis to represent the inputs – the initial conditions. For the debiasing186

operator, we take into account the spherical geometry of the Earth: in the spherical coordinate187

system, the spatial coordinate ξ represents the polar coordinate θ ∈ (−90◦, 90◦) and azimuthal188

coordinate ϕ ∈ (0◦, 360◦). At each spatial point ξ, we define the weight w(ξ) = w(θ, ϕ) =189 √
sin

(
90◦−θ
180◦ π

)
.190

In the general case, we start with the vector space x(ξ, t) with temporal mean x(ξ) where191

ξ is the spatial coordinate. We aim to represent the vector space with an optimal set of N192

spatial modes (basis functions of dimension N) νj(ξ) with N corresponding time-dependent193

expansion coefficients αj(t) (dimension nt).194

(2.8) z(t, ξ) ≜ x(t, ξ)− x(ξ) = ΣN
j=1αj(t)νj(ξ)195

We define the weighted inner product between two fields, x1(ξ) and x2(ξ)196

(2.9) ⟨x1,x2⟩w ≜
∫
ξ
w2(ξ)x1(ξ)x2(ξ)dξ197

As an example, we show the resulting discretization for the spherical coordinate198

(2.10) ⟨x1,x2⟩w ≃
∑
ξij

w2(ξij)x1(ξij)x2(ξij)δθδϕ, where, ξij = (θi, ϕj).199

We then define the spatial covariance by averaging over time200

(2.11) R(ξ1, ξ2) ≜
1

T

∫
t
(x(t, ξ1)− x̄)(x(t, ξ2)− x̄)dt ≃ 1

nt
ZZT ∈ RN×N ,201

where Z is the concatenated matrix in discrete space time:202

(2.12) Z = [z(t1) z(t2) ... z(tnt)] ∈ RN×nt203

Next, we set up the eigenvalue problem204

(2.13) ⟨R(·, ξ), ψj(·)⟩w = λjψj(ξ), ψj ∈ RN , λ1 ≥ λ2 ≥ ... ≥ λN ≥ 0205

Finally, we obtain the quantity of interest (observable), the time-dependent PCA coefficient206

(2.14) y = αj(t) = ⟨z(t, ·), ψj(·)⟩w207

If the target quantity is the first PCA coefficient, we use ψ1. However, we can adjust the mode208

ψ to focus on other quantities, such as, for example, a specific spatial location. The analysis209

works for any target quantity of interest that can be described as a functional ⟨z(t, ·), ·⟩.210
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2.4.2. Evaluation of the Acquisition Function for Functional Inputs. We now explain211

the process of computing the acquisition function in the case of applying the method to a212

system with a functional input. We highlight that in many problems, the test set (denoted213

TS) is possibly different from the training set (denoted TR), which means that the target214

quantity of interest can be generated with input points that are different from the input215

points in the training set. The likelihood-weighted acquisition function depends on both an216

input X and the predicted ŷ, and it is made up of i) the uncertainty σ2(X), ii) the weight217

from the inputs px(X), and iii) the weight from the outputs pŷ(ŷ(X)).218

(2.15) qLW-US(X) = σ2(X)
px(X)

pŷ(ŷ(X))
219

We first define some relevant quantities for our problem set up. We start with a training220

set DTR consisting of candidate samples X and a test set DTS consisting of the points at which221

we we wish to evaluate the model. The set U = [X1 ... Xp] consists of the p points that were222

selected from all candidate points to train the model. The overall goal is to find which samples223

X from DTR we should add to U to improve the prediction of the target output y. At each224

iteration of the algorithm, we train a model MU trained with the selected samples U , a subset225

of DTR. We use MU to make two sets of predictions: i) predictions for the candidate training226

points Ŷtr = MU (X ) and ii) predictions for the test points Ŷts = MU (DTS). Then, we use227

PCA to evaluate the quantities of interest ŷtr and ŷts which are the mean of the predictions228

of all n members in the NN ensemble229

(2.16) ŷtr =
1

n

n∑
j=1

〈
Ŷj
tr, ψ

〉
w
, and ŷts =

1

n

n∑
j=1

〈
Ŷj
ts, ψ

〉
w

230

We obtain an estimate for the uncertainty of the predictions made with the candidate231

training points σ2(ŷtr(X )) from the model MU . The uncertainty is the variance of the pre-232

dictions made by each member Mj
U of the ensemble.233

(2.17) σ2(X ) =
1

n

n∑
j=1

(
ŷjtr(X )− ŷtr(X )

)2
=

1

n

n∑
j=1

(〈
Mj

U (X ), ψ
〉
w
− ⟨MU (X ), ψ⟩w

)2
234

The distribution of the input points pX is approximated by the distribution of the first235

k PCA coefficients of the input data set X where k is selected according to the decay of the236

eigenvalues. We refer to the truncated version of X as x, and we estimate its kernel density237

estimate (KDE) px using the python function FFTKDE from the package KDEpy.238

(2.18) pX (X ) ≈ px(x) where x =
〈
X ,

{
ψ
}k

i=1

〉
w

239

The single time distribution pŷts is estimated with the predictions ŷts. Like pX , pŷts is also240

computed with KDEpy. We then compute the weight for the output, by evaluating pŷts at the241

predictions made from the candidate training points ŷtr(X ).242

(2.19) pŷts(ŷtr(X )) = pŷts(⟨MU (X ), ψ⟩w)243
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In the end, the acquisition function for the candidate training points X is computed using all244

of the quantities above245

(2.20) qLW-US(X ) = σ2(X )
pX (X )

pŷts(ŷtr(X ))
246

As a result, we can evaluate the acquisition function at a low cost for high-dimensional func-247

tional inputs X .248

3. Application to the Majda-McLaughlin-Tabak (MMT) Model.249

3.1. MMT System. We first apply the described method to the MMT model, a one-250

dimensional dispersive nonlinear wave model that, given certain parameters, is useful for251

studying turbulence and rogue waves [29]. More details on the overall system can be found in252

[8, 59, 38, 12, 60]. The system is described by the governing equation253

(3.1) iut = |∂x|αu+ λ|∂x|−β/4

(∣∣∣|∂x|−β/4u
∣∣∣2 |∂x|−β/4u

)
+ iDu254

where the output u is a complex scalar representing the wave amplitude, α and β are param-255

eters of the system, and D is a selective Laplacian which eliminates high wave numbers. For256

α = 1/2 and β = 0, the equation can be rewritten in the wave number space with forcing f(k)257

258

(3.2) û(k)t = −i|k|1/2û(k)− iλ|û(k)|2û(k) + D̂u(k) + f(k)259

where the selective Laplacian is defined as260

(3.3) D̂u(k) =

{
−(|k| − k∗)2û(k) if |k| > k∗

0 if |k| ≤ k∗
261

This operator D̂u(k) prevents wave numbers above a threshold k∗: for small wave amplitudes,262

the output PDF appears to be Gaussian, but for large wave amplitudes, the output PDF is263

very heavy-tailed. The stochastic complex initial conditions u(x, t = 0), which are Gaussian,264

are obtained from the covariance265

(3.4) k(x, x′) = σ2u exp
(
i2 sin2(π(x− x′))

)
exp

(
−2 sin2(π(x− x′))

l2u

)
266

with σu = 1 and lu = 0.35, and they are reduced to 2m dimensions, m real and m imaginary,267

using the Karhunen-Loeve (KL) expansion,268

(3.5) u(x, t = 0) ≈
m∑
j=1

αj

√
λjϕj(x), ∀ x ∈ [0, 1)269

which transforms the original high-dimensional data into a set of orthogonal components. The270

KL expansion is a dimensionality reduction method that maximizes the amount of retained271

information by only using the most important features of the data. The grid is periodic over272
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[0, 1) and discretized into 512 points, m is set to 4, the timestep is dt = 0.001, the parameters273

of the equation are λ = −0.5 and k∗ = 20, and there is no forcing, f(k) = 0. As in [35]274

and [19], we seek to train a standard fully-connected NN (FC-NN) to predict the maximum275

future wave amplitude over a given time horizon, an extreme event, as a function of the 2m276

stochastic initial conditions α⃗277

(3.6) y(α⃗) = ||Re(u(x, T = 50; α⃗))||278

3.2. MMT Data Sets. To better mimic the characteristics of data sets that are found in279

the real world, we make use of two data sets: points obtained from inputs that follow a Gauss-280

ian distribution, DpX , and points obtained with Latin hypercube sampling, DLHS . For Monte281

Carlo sampling, we select candidate training points from DpX because this distribution more282

closely resembles naturally-occurring data sets. As a result, we compare our proposed method283

to a more rigorous benchmark (the Monte Carlo sampling performs worse when applied to284

points from DLHS). For US/LW-US sampling, we select candidate training points from DLHS285

because this data set more completely represents all the achievable values, including the tails286

of the distribution. We evaluate the error metrics on the test set DLHS to measure the ability287

of the models to capture the tails of the distribution.288

3.3. MMT Machine Learning Architecture and Active Learning Hyperparameters. We289

test both the E-NN and the D-NN described in Section 2.3. For the E-NN, we use an ensemble290

of size 2, and for the D-NN, we use an ensemble fo size 5. Even though the size of the D-NN291

ensemble is higher, the overall process takes less time because only one model is trained. From292

the results of a simple hyperparameter grid search, we set the number of layers to eight, the293

number of neurons to 250, the activation to ReLU, the number of epochs to 3000, and the294

batch size to the floor of half the number of points in the training set. For the D-NN, we set295

the dropout rate to 50%, a standard choice in many ML papers. The batch size is the only296

hyperparameter that changes at each iteration, and we choose to update the batch size at297

each iteration to keep the training error within a reasonable range given a growing data set298

size and a constant number of epochs. We initialize the algorithm with a training set of 10299

randomly chosen points. At each iteration, we add a batch of 10 points to the training set300

(points that correspond to the maximum value of the acquisition function), and we re-initiate301

the model to avoid getting stuck in any bad local minima found during early iterations.302

3.4. MMT Results. The results obtained from carrying out the algorithm for 150 itera-303

tions (up to 1500 points — 1.5% of the full data set) for randomly chosen points (MC), input-304

weighted uncertainty sampling (US), and likelihood-weighted uncertainty sampling (LW-US)305

are shown in Figure 2. Because we compute the mean squared error (MSE) with the Latin306

hypercube sampling data set DLHS , we weight the error by the input distribution as follows307

(3.7) MSE =

N∑
i=1

(yi − ŷi(α⃗i))
2pX(α⃗i)308

The LW-US outperforms MC and US with respect to minimizing the error in the tail of the309

PDF, and this is seen again in Figure 3. The E-NN outperforms the D-NN, but the D-NN310

training is faster, making it a useful architecture for more computationally expensive problems.311

312
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Figure 2. Error Convergence Curves of the MMT Predictions. The log of the LPE error (left) and
log of the MSE (right) are plotted as a function of the number of points in the training set for both the E-NN
and D-NN implementations of the MC, US, and LW-US acquisition functions. LW-US (both E-NN and D-NN)
significantly outperforms the other acquisition functions with respect to LPE. E-NN US initially achieves a
better MSE, but E-NN LW-US eventually achieves a similar error.

3.5. Interpreting the Selected Points: Multidimensional Scaling. To gain insights into313

the behavior of the LW-US active search algorithm, we visualize the eight-dimensional selected314

input points with multidimensional scaling (MDS). MDS projects high-dimensional points to315

a two-dimensional subspace with the requirement that a chosen distance metric be preserved316

between points — points that are more spread apart in the original space must be spread apart317

in the lower-dimensional space, and vice versa. As is typically done, we use the Euclidian318

distance as the distance metric. The two-dimensional projection shown in Figure 3 reveals319

that points chosen by the LW-US acquisition function are farther apart than points chosen by320

other acquisition functions. The results of MDS suggest that drawing points that are more321

“spread out” with respect to each other can be helpful for predicting extreme events.322

4. Application to Debiasing Operator for Coarse-Resolution Climate Model Outputs.323

We now show how likelihood-weighted active selection can be used to speed up the training324

of ML climate models while improving the prediction of extreme weather events. We focus on325

the model in [3] which learns a debiasing operator that maps trajectories from a free-running326

coarse-resolution climate simulation to trajectories from a high-resolution fully-resolved cli-327

mate reanalysis data set [3, 61, 9]. The advantage of this model is that the operator can be328

used to correct less computationally expensive low-resolution climate simulations. While we329

focus on this one model, the algorithm is model agnostic and can be used for any ML-based330

climate model for which the set of possible training points is very large. In addition to re-331

ducing computational time and costs, the likelihood-weighted criterion is able to determine332

which points are most relevant to the dynamics of target extreme weather events.333

4.1. Climate Data Sets. The coarse-resolution simulations are obtained from version 2334

of the Energy Exascale System Model (E3SM) Atmosphere Model (EAMv2) [13, 17, 56]. The335

data set consists of temperature (T), specific humidity (Q), zonal velocity (U), and meridional336

velocity (V) at a 1◦ (approximately 110km) resolution, and we only consider the vertical layer337

closest to the surface of the Earth. The high-resolution target data set is the European Centre338
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Figure 3. Visualization of Selected MMT Input Points. In the top row, the 8D space is projected to
a 2D space with multi-dimensional scaling. Each plot shows the spread of the optimally selected points in black
over the prediction made from the neural network trained after 150 iterations with training data obtained from
MC, US, and LW-US (left to right). The rightmost plot suggests that points chosen by LW-US are more spread
out. In the bottom row, the predicted PDF is compared to the true PDF after 150 iterations for MC, US, and
LW-US, and LW-US best matches the tail of the distribution.

for Medium-Range Weather Forecasts (ECMWF) Reanalysis version 5 (ERA5) [20]. ERA5339

has a resolution of 0.25◦ (approximately 31km), but it is projected onto the E3SM grid for the340

purpose of this model. For all data sets, we use 10 years of data from 2007 to 2017, sampled341

8 times per day.342

During the training phase, the output is the fine-scale reanalysis data set (denoted ERA5),343

and the input is the free-running data set from the coarse-scale climate solver that has been344

nudged (denoted NUDG) to match the output. We will not go into the details of the nudg-345

ing procedure, but it is comprehensively described in [3]. During the testing phase, we use346

the trained model to predict high-resolution field given the un-nudged free-running coarse-347

resolution climate simulation (denoted CR for coarse-resolution). Each data set (DERA5,348

DNUDG, and DCR) is a field over space ξ and time t. Figure 4 shows the mean of the reference349

reanalysis data set and the mean of the model output given the test data CR as input.350

4.2. Machine Learning Architecture and Active Learning Hyperparameters. The NN351

architecture, in Figure 5, is an encoder-decoder consisting of 2D convolutional layers. The352

globe is divided into 25 sections (5 × 5 grid), the sections are padded to satisfy spherical353

periodicity (the Earth is a globe), and the encoding convolutions are applied to each section354

independently. The encoder is made up of one layer to split the globe, one layer to spherically355

pad the sections, three convolutional layers applied to each section to capture anistropic local356

features, one layer to merge the section. Next, the decoder applies “deconvolutional” layers357
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Training Data Set: ERA5
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Figure 4. Mean of ERA5 and Mean of M100(CR) for temperature. During the training phase, the
nudged data set is mapped to the ERA5 data set. During the testing phase, the coarse-resolution (CR) data set
is provided as input to the trained model.

(or transpose convolutional layers) to map the latent space back to the desired dimension.358

Finally, the 25 sections are combined to recreate the full field. The batch size is set to 8, and359

the number of epochs is set to 150, as was done in [3]. The loss function is the MSE for which360

spatial points are weighted by latitude θ: w(θ) =
√

sin
(
90◦−θ
180◦ π

)
.361

split spherical
padding

convolutions merge

120x240

24x48
45x67

21x32 9x14 4x5
20x25 11x13 25x29

53x61
24x48

120x240

de-convolutions
merge

encoder decoder

Figure 5. Climate Debiasing Operator Neural Network Architecture. The NN architecture splits the
Earth into sections which are individually passed through convolutional encoder-decoder layers.

The model MU is trained to map samples U from DNUDG to the output DERA5. During362

the testing phase, the input of the model is DCR, and the resulting functional output is the363

field Y = MU (DCR). To evaluate the framework, we generate “ground truth” data by training364

a model with 100% of the samples in DNUDG and DERA5: we call this model M100. Then,365

we use the model M100 to make a prediction from the un-nudged coarse resolution data set366

DCR: we call this prediction M100(DCR). At each iteration, we compute error metrics for367

MU (DCR) with respect to M100(DCR).368

The probabilistic model is an E-NN of size two, a choice that was shown to be preferable369

in [35]. The prediction is the mean of the outputs of each member of the ensemble, and the370

uncertainty is their variance. We initialize the algorithm with a training set of ten randomly371

chosen points, and at each iteration, we add ten points to the training set (points that corre-372

spond to the maximum value of the acquisition function). For the MC case, we add twenty373

random points at each iteration because future iterations do not depend on previous iterations.374

There are 29,200 (10 years × 365 days × 8 measurements per day) possible samples that can375

be chosen by the acquisition function, but we only evaluate the method up to 750 points in376

the training set (2.6% of all data). For each test case, we perform five or six experiments so377
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that we can take the average MSE and LPE over the different experiments.378

4.3. Results. For the climate application, we test the method on three cases: i) the first379

PCA coefficient for temperature over the entire globe (Figure 6), ii) temperature in Paris380

(Figure 9), and iii) specific humidity in Miami (Figure 12). These last two locations were381

chosen randomly from a list of cities that have experienced extreme heat waves (in the case382

of temperature) or extreme floods (in the case of specific humidity) in the last few decades.383

Figure 6. First weighted PCA
mode of the global temperature field.

200 400 600
Number of Points in Training Set

2.0

2.5

3.0

3.5

4.0

4.5

lo
g 1

0(
M

SE
)

MC
LW-US

200 400 600
Number of Points in Training Set

0.0

0.5

1.0

1.5

2.0

lo
g 1

0(
LP

E)

MC
LW-US

Figure 7. The log of the MSE and LPE are shown for MC and
LW-US with respect to predicting the first PCA coefficient for tem-
perature given a global model.
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Figure 8. The true PDF of the first PCA coefficient for temperature is compared to the PDF obtained from
predictions made with MC and LW-US. The black vertical line denotes the mean of the true distribution, and
the dashed lines denote the 1σ and 2σ. LW-US is able to better match the left tail of the true PDF.

Looking at the LPE as a function of number of points in the training set in Figures 7, 10,384

and 13, we see that LW-US outperforms MC in all cases. In some cases, the improvement385

is more significant (e.g. temperature in Paris Figure 10). The improvement obtained from386

using LW-US can also be seen in the plots of the PDF (Figures 8, 11, and 14)— LW-US does387

a better job at matching the tails of the distribution. We also observe that the improvement388

obtained from using LW-US occurs at different number of iterations for different test cases. In389

the case of MSE, the error is similar for cases involving temperature (Figures 7 and 10), but390

worse for cases involving humidity (Figure 13). When using LW-US to improve the prediction391

of temperature, there are no losses in the MSE and great improvement in the LPE. We note392

that as the number of data points increase, the two methods give very similar results, as393

expected.394
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Figure 9. Mean temperature in the
region surrounding Paris, France.
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Figure 10. The log of the MSE and LPE are shown for MC and
LW-US with respect to predicting the temperature in Paris given a
global model.
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Figure 11. The true PDF of the temperature in Paris is compared to the PDF obtained from predictions
made with MC and LW-US. The black vertical line denotes the mean of the true distribution, and the dashed
lines denote the 1σ, 2σ, 3σ, and 4σ. LW-US is able to better match the tails of the true PDF with just 310
points.

4.4. Interpreting the most informative data points: Clustering. Upon selecting the395

training points, the subsequent goal is to determine if the points that were chosen by the396

algorithm have any relevant physical meaning. For example, scientists could be interesting in397

determining if these points are related to important system dynamics, if they can be attributed398

to physical phenomena (e.g. turbulence, atmospheric rivers, tropical cyclones, etc.), or if their399

physical interpretation depends on the target’s predicted output. Understanding why the400

optimal points were selected also reduces some of the “black box” nature of the ML-based401

algorithm.402

We present a clustering framework to mechanistically identify and define the dynamics of403

these points of interest. Clustering, a form of reduced-order modeling in which observations404

are clustered around centroids, has been used for climate data sets in other applications [27].405

In the case of a dynamic system like the climate, the observations (or samples) are snapshots406

in time of the system. We select cluster centroids from the entire reference data set of PCA407

time coefficients αj(t) =
〈
DERA5, ψERA5

j

〉
w

using the standard k-means algorithm with k-408

means++ for seed initialization. We set the number of clusters to six for all cases. The409

resulting cluster centroids are projected back onto the PCA modes to visualize the spatial410
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Figure 12. Mean specific humidity
in the region surrounding Miami, USA.

200 400 600
Number of Points in Training Set

6.8

6.6

6.4

6.2

6.0

5.8

lo
g 1

0(
M

SE
)

MC
LW-US

200 400 600
Number of Points in Training Set

0.4

0.2

0.0

0.2

0.4

lo
g 1

0(
LP

E)

MC
LW-US

Figure 13. The log of the MSE and LPE are shown for MC and
LW-US with respect to predicting the specific humidity in Miami given
a global model. LW-US is better for minimizing LPE, but worse for
minimizing MSE in the case of specific humidity.
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Figure 14. The true PDF of the specific humidity in Miami is compared to the PDF obtained from pre-
dictions made with MC and LW-US. The black vertical line denotes the mean of the true distribution, and the
dashed lines denote the 1σ and 2σ. LW-US is able to better match the tails of the true PDF.

patterns. These cluster centroids are then used to predict the cluster labels of the new subset411

of the data chosen by the algorithm. This step assigns the optimal points to relevant cluster412

centers which allows us to determine if the points chosen by the algorithm are associated with413

noteworthy dynamical phenomena. The ultimate goal is to interpret the physical meaning of414

the points that were chosen for training.415

In Figures 15 and 16, the six clusters are mapped in order of most occurring in the whole416

data set (Cluster #1) to least occurring in the whole data set (Cluster #6). For temperature417

in Paris (Figure 15), we found that points belonging to Cluster #6 are more relevant to the418

dynamics of extreme weather events (Figure 15). Upon further examination, the shape of419

Cluster #6 suggests a potential heat dome over Paris and the surrounding region [23]. By420

using clustering, we are able to pick out extreme weather events using the active search as421

an unsupervised algorithm. For specific humidity in Miami (Figure 16), we observe a similar422

behavior: around 30% of the optimal points belong to Cluster #1 which resembles standard423

zonal flow while around 50% of the optimal points belong to Cluster #6 which resembles a424

blocking pattern. We also observe that only Clusters #1 and #6 are well-represented in the425

optimal points which might provide an explanation as to why the MSE from LW-US is higher426

This manuscript is for review purposes only.



16 B. CHAMPENOIS AND T. P. SAPSIS

for humidity in Miami.427

Figure 15. Clusters for Temperature in Paris With 310 points in the training set, Cluster #6 only
represents 13.18% of all data but 37.47% of the optimal data. Cluster #6 exhibits a blocking pattern over most
of France. The next most occurring cluster is Cluster #1 which represents standard zonal flow, typical for
normal weather events.

5. Conclusions. To better prepare for the impacts of climate change on humans, infra-428

structure, and ecosystems, there is a pressing demand for improved climate models. These429

models need to be fast so that they can be used for a variety of potential emission scenarios,430

and they need to be accurate, even with respect to capturing the statistics of lower-probability431

extreme weather events. Given both i) the rise in ML-based weather and climate models and432

ii) the vast number of samples in high-resolution comprehensive climate data sets, our ability433

to develop models can be significantly improved by more intelligently selecting training data.434

To address this gap in the field, we introduced a likelihood-weighted active data selection435

framework which sequentially selects optimal training points to improve prediction of extreme436

event statistics (i.e. tails of the distribution). The framework is model agnostic and suitable437

for high-dimensional data sets. We demonstrated the success of the framework on both a438

synthetic problem and a real-world problem. In both cases, the likelihood-weighted active439

data selection achieved a lower error in the tails of the probability distribution with fewer440

training points, which reduces model uncertainty and brings down computational costs. In441

the real-world problem, our method was also able to identify the dynamics relevant to extreme442

weather events for added interpretability. The developed approach has the potential to be443

useful for improved environmental sampling schemes, as well as compression algorithms that444

preserve the information associated with extreme events in extensive data sets.445

This manuscript is for review purposes only.



LIKELIHOOD-WEIGHTED ACTIVE SELECTION FOR IMPROVED EXTREME EVENT PREDICTION 17

Figure 16. Clusters for Specific Humidity in Miami With 310 points in the training set, Cluster #6,
which resembles a blocking pattern, only represents 9.97% of all data but 50.32% of the optimal data. The next
most occurring cluster is Cluster #1 which resembles standard zonal flow, typical for normal weather events.
The spread of the frequency of optimal points does not change much between 310 points and 750 points.

This manuscript is for review purposes only.



18 B. CHAMPENOIS AND T. P. SAPSIS

Appendix A. Supplementary Figures.

Training Data Set: ERA5
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Figure 17. Mean of ERA5 and Mean of M100(CR) for humidity. During the training phase, the
nudged data set is mapped to the ERA5 data set. During the testing phase, the coarse-resolution (CR) data set
is provided as input to the trained model.
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Figure 18. Temperature in Delhi. In the top row, the MSE and LPE are shown for MC and LW-US. In
the bottom row the true PDF is compared to the PDF obtained from predictions made with MC and LW-US.
The black vertical line denotes the mean of the true distribution, and the dashed lines denote the 1σ, 2σ, and
3σ.
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Figure 19. Temperature in Delhi: With 310 points in the training set, Cluster #5 only represents 11.9%
of all data but 50.9% of the optimal data. The next most occurring cluster is Cluster #1. With 750 points in
the training set, there is a significant increase in the presence of Cluster #6.
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Figure 20. Specfic Humidity in Ankara. In the top left, the MSE and LPE are shown for MC and
LW-US. In the bottom row the true PDF is compared to the PDF obtained from predictions made with MC and
LW-US. The black vertical line denotes the mean of the true distribution, and the dashed lines denote the 1σ,
2σ, 3σ, and 4σ.
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Figure 21. Humidity in Ankara: With 310 points in the training set, Cluster #4 only represents 13.93%
of all data but 96.32% of the optimal data. With 750 points in the training set, Cluster #4 remains heavily
represented, but a larger portion of the optimally selected points are coming from Cluster #1.
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