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A B S T R A C T

This study employs a data-driven approach to studying physical system vibrations, focusing on two main
aspects: using variational autoencoders (VAEs) to generate physical data (i.e. data ‘‘similar’’ to those obtained
via real-world processes) and using transformers in order to continuously forecast flexible body nonstationary
vibrations (2D time-series) in time–space using information from sparse sensors on the body (observers). A VAE
is trained on vortex-induced vibrations (VIV) data collected from experiments conducted by the authors and is
then tasked with generating synthetic VIV data similar to the experimental. The synthetic data are then used
to train a transformer architecture whose objective is to continuously forecast the vibrations in time–space
using sparse observations. The transformer (which has never seen real data) is tested against real experiments
and its performance is compared to that of the same architecture trained on real data. In doing so, the ability
of VAEs to generate data which preserve their training data’s intrinsic properties (i.e. physicality) is evaluated.
Finally a comparison between the forecasting performance of the transformer architecture, an LSTM, and a
DNN is presented.
1. Introduction

1.1. Vortex-induced vibrations (VIV)

Vortex-induced vibrations (VIV) are vibrations that affect bluff bod-
ies in the presence of currents. VIV are driven by the periodic formation
and shedding of vortices in the bodies’ wakes which create an alternat-
ing pressure variation causing persistent vibrations (Triantafyllou et al.,
2016). The vibration amplitude is typically moderate, not exceeding
about one to two body diameters (Bernitsas et al., 2019). For flexible
bodies, VIV are not uniform along the body’s length (termed the span
in literature) but rather different points along the body vibrate with
different amplitudes and phases (visually resembling a taut string), as
shown if Fig. 1.

Today, VIV have become a problem of interest to both theoreticians,
due to the complex underlying mechanisms involved, and engineers,
due to the practical significance of mitigating the fatigue damage VIV
can cause to offshore structures and equipment such as marine risers
and offshore wind turbines.

For flexible bodies, the vortex formation frequency coincides with
the frequency of vibration in a phenomenon known as lock-in (Navrose
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and Mittal, 2016); this occurs across a wide range of oscillating fre-
quencies resembling a nonlinear resonance (Park et al., 2016). Given
that flexible body VIV are not span-wise uniform as the flexible body
undergoes a spatially traveling and/or standing wave response from the
forcing exerted by the fluid (Wang et al., 2021; Triantafyllou et al.,
2016; Fan, 2019), the observed motions are unsteady, nonstationary,
and can transition to different responses even for seemingly unchanged
experimental conditions (Williamson, 1996) making continuous fore-
casting notoriously challenging. In addition, the vibrations are not
Markov and alterations of the flow field in the past affect the future
response outcomes (i.e. the driving mechanism has memory).

Current state-of-the-art prediction technologies for VIV are semi-
empirical physics based models like VIVA (Zheng et al., 2011), VI-
VANA (Larsen et al., 2017), and Shear7 (Vandiver, 1999), whose
accuracy relies heavily on the semi-empirical coefficients used and
are limited to forecasting the vibrations on average: predicting the
root-mean-square (rms) of the vibrations averaged over many cycles.
Continuous time–space reconstructions with no forecasting capabilities
of flexible body VIV have only recently been attempted when Kharazmi
et al. (2021) attempted to continuously reconstruct the vibrations using
LSTM networks in modal space (LSTM-Modnet).
029-8018/© 2024 Elsevier Ltd. All rights are reserved, including those for text and
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Fig. 1. Schematic of a flexible body undergoing vortex-induced vibrations (VIV).
Source: Adapted from Feng et al. (2019).

Although leveraging transformers to predict time series is a very
active field of research (Zhou et al., 2021; Zeng et al., 2023; Liu
et al., 2022; Zhou et al., 2022), transformers have not yet been used to
predict VIV of flexible bodies, which are physical non-stationary time-
series, to the best of the authors’ knowledge. In addition, only limited
work has been performed in generating physical data using generative
models (Zhong and Meidani, 2023; Takeishi and Kalousis, 2021; Shu
et al., 2023) and there are no identifiable applications to VIV in the
literature. Moreover, imposing physical characteristics on synthetic
VIV data through a combined (physics informed) loss is currently not
possible, as it would require force measurements on the body, an im-
possible task using data from real experiments. Applications of machine
learning methods for VIV mostly include solving physical equations
using physics-informed neural networks (PINNs) (Bai and Zhang, 2022;
Raissi et al., 2019) and learning hydrodynamic coefficients or other
relevant quantities (Ma et al., 2022) in order to predict the motions
on average rather than instantaneously (Ma et al., 2021; Rudy et al.,
2021; Mentzelopoulos et al., 2022, 2023).

In this work, a purely data-driven approach will be employed to
assess whether synthetic VIV data generated using a variational au-
toencoder are physical. Physicality in this context will be measured by
the ability of the synthetic data to inform models: a comparison will
be made between a transformer architecture tasked with forecasting
VIV trained on real data and the same transformer trained on synthetic
data. In both cases the transformer will be tasked with forecasting real
data collected from experiments. The rest of the paper will be orga-
nized as follows: first, a VAE architecture will be developed, trained
on real data from experiments and used to generate synthetic VIV
data. Second, a transformer architecture for continuous time–space VIV
forecasting will be developed and trained on real data to assess its
predictive capabilities. Finally, the same transformer architecture will
be trained on the synthetic data (only) and tasked with forecasting
the real experiments. In doing so, the ability of the VAE to generate
data which carry (at least partially) meaningful information of the real
data obtained via the physical process will be examined. Finally, an
architecture comparison will be made between forecasting experiments
using transformers, Long Short-Term Memory (LSTM) networks, and
Deep Neural Networks (DNN).

1.2. Data in brief

1.2.1. Physical experiments
All data used for this study were collected during experiments con-

ducted by the authors at the MIT Towing Tank, a facility consisting of
a 100ft × 8ft × 4ft water tank equipped with a towing carriage capable
of reaching speeds exceeding 2 m/s as well as a flow visualization
window. In this and the following sections the terms riser model, riser,
flexible body, and flexible cylinder will be used interchangeably to refer
to the flexible cylinder model used during experiments.
2

Fig. 2. Visualization of experimental data as images. By storing the data in 2D arrays
of size N-time × N-sensor = 36 × 36, the x-axis corresponds to body location and the y-
axis corresponds to time step (i.e. 𝛥𝑡 = 1∕fps= 1∕120 s between rows). The displacement
normalized by the body’s diameter is highlighted on the plane. On the left we visualize
the data stored in a 2D array. On the right, we plot the interpolated values which
may be more intuitively visualized as flexible body vibrations. Sections parallel to the
x-axis are ‘‘snapshots’’ of the flexible body vibrating in the direction perpendicular to
the paper (i.e. ‘‘in and out of the page’’).

A riser model with length 𝐿 = 0.89 m and diameter 𝐷 = 0.005 m
with negligible stiffness was towed at a uniform flow of speed 𝑈 =
0.7 m∕s. The resulting motions were recorded using two underwater
cameras facing perpendicular directions: one for in-line motions (paral-
lel to the incoming flow) and one for cross-flow motions (perpendicular
to the incoming flow). The displacement (i.e. position with units of
physical distance) at 36 uniformly spaced locations on the body was
tracked using a machine-vision framework. The endpoints were fixed
and thus their displacement was zero throughout the experiments.

For this study, the cross-flow displacement data were used: specifi-
cally, the cross-flow displacement data normalized by the body’s diam-
eter. For more information on the experimental setup one may refer to
Appendix A. The machine-vision framework for motion tracking of the
flexible body vibrations from raw frames is discussed in Mentzelopoulos
et al. (2024).

1.2.2. Vibration data as images
Given the data sampled at 36 uniformly spaced locations along the

body’s span at 120 fps, the vibrations were stored as 2D arrays of shape
N-time × N-sensor.

Fig. 2 illustrates how the 2D data arrays can easily be visualized
and treated like single channel images. If necessary, scaling pixel values
invertibly to an interval of choice, like [0,1], is achievable in just a few
operations leveraging the maximum and minimum values of the data.
In the images shown above, each row corresponds to a different time
of the recorded vibration at the sampled locations. The time difference
between consecutive rows is 𝛥𝑡 = 1∕fps = 1∕120 s with time increasing
downwards. The 36 ‘‘sensor locations’’ correspond to the uniformly
spaced tracked positions on the body. Plotting the interpolated values
of the arrays yields a more intuitive visualization of the vibrations. For
convenience, all the data collected from experiments were stored in a
single 4D array of size N𝑏𝑎𝑡𝑐ℎ ×1× N-time × N-sensor = 260×1×36×36,
yielding hundreds of square arrays of size 36 × 36 which could be easily
visualized and collected in batches for training models.

2. Methodology & experiments

2.1. Generative-AI for physical vibration data using variational autoen-
coders

In this section we focus on generating physical vibration data us-
ing generative-AI techniques. Specifically, a VAE is trained on the
experimental data to generate synthetic data of the vibrations. We
are primarily interested in understanding whether the generated data
preserve physicality.

As shown in Fig. 3, the variational autoencoder consists of an en-
coder network which learns the mean 𝜇 and variance 𝜎 of the posterior
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Fig. 3. Schematic of the variational autoencoder architecture. The network structure
consists of an encoder network mapping data from the input space to the mean 𝜇 and
variance 𝜎 of the posterior distribution in the latent space, assuming a Gaussian prior,
and a decoder network mapping data probabilistically from the latent space back to
the input space. The variable 𝜀 is standard Gaussian random.

Fig. 4. Architecture of the encoder and decoder networks of the VAE. The encoder
network uses a total of 4 MLP layers to map from the inputs to 𝜇 and 𝜎 (2 sequential
and two stacked) while the decoder uses 2 sequential MLP layers.

Table 1
Parameter values for the VAE.

Dimension Value

dim_in 36 × 36
num_hidden 32
z_dim 5

(latent) distribution of the data, 𝑞(𝑧 ∣ 𝑥), assuming a Gaussian prior, and
the decoder which learns the posterior of the input data given their
latent representations 𝑝(𝑥 ∣ 𝑧).

Although asymmetric, both the encoder and decoder architectures
consist of MLP layers. Both architectures are shown in Fig. 4. The
encoder network uses a total of 4 MLP layers to map from the inputs to
𝜇 and 𝜎 while the decoder uses two sequential MLP layers. The hidden
units (num_hidden) of all linear layers was the same. The dimensions
of the architecture parameters are summarized in Table 1.

Training was done by maximizing the evidence lower bound (ELBO)
on the experimental data and the outputs of the variational autoen-
coder. This is equivalent to minimizing the following loss (negative of
ELBO).

Loss = −E𝑞(𝑧∣𝑥)

[

log 𝑝(𝑥 ∣ 𝑧) −𝐷𝐾𝐿(𝑞(𝑧 ∣ 𝑥) ∣∣ 𝑞(𝑧))
]

(1)

where 𝐷𝐾𝐿 refers to the Kullback–Leibler divergence and 𝑞(𝑧) is the
prior latent distribution, assumed standard multivariate Gaussian. The
VAE was trained using Adam optimizer with a learning rate 𝑙𝑟 = 0.01
for a total of 5000 epochs. A step scheduler was set to decay the step by
3

Fig. 5. Variational autoencoder loss.

Fig. 6. Synthetic vortex-induced vibration data generated using the variational autoen-
coder. Two random samples of generated data are shown in the top row along with
two random samples of real data from experiments in the bottom row.

𝛾 = 1∕2 every 2000 iterations. The training loss as a function of epoch
is shown in Fig. 5.

Having trained the VAE, samples from the standard normal distribu-
tion were drawn and decoded in order to generate synthetic VIV data.
Two random samples are included in Fig. 6, along with two random
samples of real data observed during experiments.

Albeit the generated data are qualitatively similar to the real data
obtained from experiments as shown in Fig. 6, their promise begs the
question of whether they preserve the intrinsic properties of the real
experimental data and whether they carry meaningful information of
the underlying physical process (i.e. whether physicality is preserved).
In order to address this question, we will examine whether a model
trained on synthetic data can be used to predict real experiments.
Should the data preserve physicality, the generative models could
potentially be used both to study and to simulate VIV.

On the choice of the generative model, we note the VAE was
chosen due to its ability to learn and generate smooth and contin-
uous data which is important for physical vibrations as well as its
inherent regularization and robustness. The latent space of the VAE is
a smooth Gaussian allowing for effective interpolations among latent
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Fig. 7. VIVformer: a transformer architecture used for predicting VIV. The VIVformer consists of sequential Residual-Attention modules followed by a final linear layer. The
VIVformer performs multi-head attention with residual connections while also leverages a fully connected feed-forward networks as its core data processing schemes. The architecture
also leverages and embeddings network which transforms the input into embeddings and a corrector network operates on the outputs of the residual attention modules.
representations and the KL divergence term in the objective function
(Eq. (1)) acts a s a regularizer ensuring that the latent representation
is meaningful. Moreover, the probabilistic nature of the encoder and
decoder makes the model fit for handling noisy physical data without
propagating noise in the generated samples. On the other hand, VAEs
can be tricky to train and may suffer from poor sample quality should
the hyperparameters chosen not be well enough tuned.

2.2. VIVformer - A transformer architecture for VIV

In this section we develop the VIVformer, a transformer architecture
to model and forecast the VIV of flexible bodies. The model’s architec-
ture is shown in Fig. 7: the VIVformer consists of 1. an embeddings
network, 2. sequential Residual-Attention modules followed by linear
layers, 3. a corrector network with a residual connection. The input
to the VIVformer is a batch of vibration data with shape N-batch ×
N𝑡𝑖𝑚𝑒−𝑖𝑛 × N-observer. The data are then passed through the embed-
dings net, N𝑎𝑡𝑡𝑛−𝑙𝑎𝑦𝑒𝑟𝑠 residual attention modules, scaled to the desired
N𝑡𝑖𝑚𝑒−𝑜𝑢𝑡/N-sensor, and corrected, yielding an N-batch × N𝑡𝑖𝑚𝑒−𝑜𝑢𝑡 ×
N-sensor output.

The residual-attention modules are the drivers of the data process-
ing and are similar to the encoder modules of the original transformer
proposed by Vaswani et al. (2017). These modules accept an input on
which they perform two sequential tasks: 1. multi-head attention with a
residual connection, and 2. pass the output of the multi-head attention
module through a fully connected feedforward network (FFN) with a
residual connection. The process can be visualized in the bottom left of
Fig. 7.

The multi-head attention layer is comprised of Nℎ𝑒𝑎𝑑𝑠 number of
attention heads which calculate the self-attention of the input. The
superposition of the input and output from the Multi-head attention
module is then passed through the FFN. The FFN performs layer nor-
malization, passes the output through a linear layer which scales the
input to mlp-dim, then through a Gaussian Error Linear Unit (GeLU)
activation and scales the output back to the original dimension by pass-
ing through a second linear layer. Both these processes are illustrated
on the bottom right of Fig. 7.

The embeddings network is a deep network consisting of linear
layers with GELU activations and transforms the input data to a high
dimensional space on which the residual-attention modules operate.
The corrector network accepts the output of the residual-attention mod-
ules (output dimension) and then applies a correction. This network
4

Table 2
Architecture parameters for the VIVformer.

Dimension Value

N-observer (spatial points in) 3
N-sensor (spatial points out) 36 − 3 = 33
N𝑡𝑖𝑚𝑒−𝑖𝑛 (time steps in) 6
N𝑡𝑖𝑚𝑒−𝑜𝑢𝑡 (time steps out) 1
emb-dim (dimension of input embeddings) 128
Embeddings net layers 5
Embeddings net hidden dimension 512
N𝑎𝑡𝑡𝑛−𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 (Residual-attention layers) 8
N𝑎𝑡𝑡𝑛−ℎ𝑒𝑎𝑑𝑠 (No. attention heads) 8
attn_dim (hidden attention dimension) 128
mlp_dim (FFN hidden dimension) 256
Corrector network layers 5
Corrector network hidden dimension 512

consists of linear layers with GELU activations and employs a residual
connection, so the network can learn to operate mildly or heavily on
the inputs. The input and output dimension to the corrector network
are the same.

Since we are interested in making predictions of physical vibration
data, the VIVformer’s parameters were trained to minimize the Mean
Square Error (MSE) between forecasted and observed vibrations.

2.2.1. VIVformer trained on data from real experiments
In this section, the experimental data obtained during experiments

were used to train the VIVformer. Specifically, the VIVformer was
tasked to predict N𝑡𝑖𝑚𝑒−𝑜𝑢𝑡 = 1 future time step of data at N-sensor =
36 − 3 = 33 locations using N𝑡𝑖𝑚𝑒−𝑖𝑛 = 6 time steps of input data at
N-observer = 3 locations. The architecture parameters are shown in
Table 2.

The model was trained on the MSE loss between predictions and
experimental observations (targets) and the parameters were updated
using the AdamW algorithm. The initial learning rate was set to 𝑙𝑟 =
0.0001 and a cosine annealing step scheduler was set to adjust the
learning rate during training.

The training data were split into 80% for training and 20% for
validation. The training data were shuffled randomly and split in mini-
batches of size 128 while the validation data were not in order preserve
the continuity of the vibrations when validating (important mainly for
visualization purposes). The VIVformer was trained for a total of 60
epochs.



Ocean Engineering 310 (2024) 118639A.P. Mentzelopoulos et al.
Fig. 8. VIVformer training and validation loss trained on experimental VIV data.

Fig. 9. Continuous time–space forecasting of VIV on unseen data from real experiments
(left) and target data from observations (right).

Fig. 8 illustrates the training results of the VIVformer trained on
real data. As is evident in the figure, the model is able to gradually
decrease the MSE loss between targets and predictions. The loss on
both the training set and the validation set seems to be decreasing and
converging.

The continuous time–space forecasting of the VIVformer architec-
ture as well as the target data from a random sample of vibration
data from the validation set are shown in Fig. 9. As is evident in
the figure, the model’s predictions on unseen experimental data are
in reasonable agreement with the target predictions. The absolute
difference between forecasting and observation is included in Appendix
B: the mean absolute difference between forecasting and observation is
less than 0.09 body diameters. Another way to visualize the accuracy
of the model would be to estimate the root mean square (RMS) of the
predictions, which also gives a sense of the predictive capabilities on
average and allows for direct comparisons with semi-empirical models.

Fig. 10 illustrates the RMS vibration of the experiments as well
as the prediction. Evidently, the model can predict the vibrations
reasonably accurately on average.

Overall, with respect to training on real data, the transformer is
reasonably accurate in terms of forecasting future motions at 36 lo-
cations on the body using information provided by 3 observers. The
model trains well on the MSE loss and seems to be converging.

2.2.2. VIVformer trained on synthetic data generated using the VAE
So far we have established that the VIVformer architecture can

forecast the physical VIV of flexible bodies to reasonable accuracy
given sparse observers on the body. This section will mainly focus
on addressing the question of whether synthetic VIV data generated
5

Fig. 10. Root mean square (RMS) of the predicted VIV as well as the experimentally
observed. RMS displacement is shown on the y-axis while span (body position) is shown
on the x-axis. Reasonably accurate agreement is evident between model estimation and
experimental observations.

Fig. 11. VIVformer training and validation loss trained on synthetic VIV data.

using the VAE are physical (or at least partially physical): that is,
whether the physical properties of the vibrations are preserved during
the generative process. In order to address this question, we will train
the VIVformer on synthetic data only and then use the trained model to
predict real data. Achieving a similar performance in terms of predic-
tive capabilities using the same VIVformer architecture trained on real
data and synthetic data (separately) would imply that the synthetic data
carry physical information of the underlying process.

A total of 160 arrays of shape N-time × N-sensor = 36 × 36
were generated using the VAE (this can be thought of as generating
160 images similar to the ones shown in section ‘‘Generative-AI for
physical vibration data using variational autoencoders’’). The synthetic
data were then used to train the VIVformer architecture. Training
parameters were the same as those used for training on the real data
(see Table 2); the only difference was the training data which were in
this case synthetic only. The same split of 80% for training and 20%
for validation was used on the synthetic data. The training results are
shown in Fig. 11. The MSE loss on both the training and validation sets
seems to be decreasing and converging. Given the training results, we
can be confident that the VIVformer has learned to predict the synthetic
data reasonably accurately. Notably, the training loss is a bit smaller
on the synthetic data using the same architecture and training epochs
which hints that the synthetic data are a bit easier to approximate. This
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Fig. 12. Forecasting of the VIV on the same subset of the validation set (left) and
target data from real experiments (right). The data are the same as those used in
Section 2.2.1.

Fig. 13. Root mean square (RMS) of the predicted VIV plotted on top of the RMS
of the experimentally observed VIV. RMS displacement is shown on the y-axis while
span (body position) is shown on the x-axis. Reasonably accurate agreement is
evident between forecasting (after training on synthetic data only) and experimental
observation.

can be attributed to random noise present in the experimental data not
carried through to the synthetic data.

The more important question is however, whether the VIVformer
trained on the synthetic data can predict the real experiments. Fig. 12
illustrates the time–space forecasting of the real experiments using
the VIVformer trained on synthetic data only. We underscore that the
VIVformer has NOT seen a single real datum during training. The
performance of the architecture is similar to that of training in the
real data and the mean discrepancy between forecasting and targets
is less than 0.11 diameters, which is only 0.02 diameters greater than
the result obtained after training on the real data.

Albeit the VIVformer has not seen any real data during training,
it can certainly make sensible predictions on the real data. The RMS
of the forecasted vibrations and observed motions from experiments
are shown in Fig. 13. As is evident in the figure, the VIVformer can
make reasonably accurate predictions of the RMS of the vibrations.
Both the trends and amplitudes are reasonably estimated although the
performance is slightly worse compared to that of the architecture
trained on real data, specifically for 𝐿∗ ∈ [0.2, 0.5].

Since the VIVformer has never trained on real data but can rea-
sonably accurately predict them, we conclude that at least part of the
physicality of the real data is preserved during the generative process
of the VAE. In a sense, the VAE can be though of not just as a generator
which makes realistic-looking data but as a framework which learns the
real data’s intrinsic properties: as such, it generates data which at least
partially preserve physicality.
6

Table 3
Benchmarking architecture parameters for the VIVformer.

Dimension Value

N-observer (spatial points in) 2 to 12
N-sensor (spatial points out) 36-(N-observer)
N𝑡𝑖𝑚𝑒−𝑖𝑛 (time steps in) 10
N𝑡𝑖𝑚𝑒−𝑜𝑢𝑡 (time steps out) 1
emb-dim (dim input embeddings) 128
Embeddings net layers 1
Embeddings net hidden dimension N/A (single layer)
N𝑎𝑡𝑡𝑛−𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 (Residual-attention) 4
N𝑎𝑡𝑡𝑛−ℎ𝑒𝑎𝑑𝑠 (No. attention heads) 2
attn_dim (hidden attention dimension) 128
mlp_dim (FFN hidden dimension) 64
Corrector network layers 2
Corrector network hidden dimension 256

2.3. Why VIVformer: comparison with LSTM and DNN

In this section we conduct experiments to investigate how the
VIVformer performs compared to other benchmark deep-learning ar-
chitectures: namely, LSTM networks and Deep neural nets. Specifically,
for the given experimental data (real), each architecture is tasked with
forecasting the observed motions with a variable number of observers;
both the testing and validation losses are recorded. In order to keep
the comparison fair, training parameters of different architectures are
selected to be approximately equal (to a few hundred thousand) with
the VIVformer having the least amount of trainable parameters (please
see Figure 20).

The DNN architecture used is of 9 MLP layers with 256 neurons
in each layer and ReLU activations. The LSTM architecture used is as
follows: 1 linear layer to transform the input data into embeddings of
dimension 256, 1 LSTM layer with hidden state of dimension 256, 2
linear layers to transform the output of the LSTM to the desired (N-
sensor × N-time) dimension, and a corrector network with a residual
connection (hidden dimension 256, 2 layers). The architecture may be
visualized in Figure 19 and is virtually the same as that used for the
VIVformer with the Residual-Attention modules replaced by an LSTM
module. For this section, the VIVformer parameters are reduced to
those shown in Table 3 in order to make the models even in terms of
number of parameters.

The number of observers tested are 2, 3, 4, 6, 9, and 12, uniformly
spaced and the number of input time-steps is set to 10 for all architec-
tures. For each number of observers, each of the architectures is trained
on 80% of the available data and validated on 20% of the data. The split
was the same for all architectures and number of observers. The results
of each individual training are included in Appendix B.

Fig. 14 illustrates the training (left) and validation (right) results
of the different architectures as a function of number of observers. As
is evident in the figure (right), the validation loss is lowest for the
VIVformer regardless of number of observers followed by the LSTM
and the DNN. As the number of observers increases, the gap between
the VIVformer and the LSTM seems to converge while the gap between
the VIVformer and the DNN seems to diverge. In addition, the exact
opposite trend is evident for the training loss, which means that the
VIVformer architecture has the smallest discrepancy between training
and validation losses. We underscore, that in every case, the number
of trainable parameters was smallest for the VIVformer, followed by
the DNN, and the LSTM. Given the comparison results we conclude
that the VIVformer architecture compares favorably against benchmark
architectures of DNN and LSTM on the VIV data at hand.

3. Conclusions

In this work, a data driven approach is employed to study phys-
ical system vibrations. Two main topics are explored: 1. Variational
autoencoders for generating synthetic data similar to those obtained via
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Fig. 14. Left: Training loss as a function of number of observers for various deep-learning architectures (DNN, LSTM, VIVformer). Right: Validation loss as a function of observers
for various the different architectures (DNN, LSTM, VIVformer).
physical processes and 2. employing a transformer to forecast physical
nonstationary vibrations.

A variational autoencoder is trained on physical vortex-induced
vibration data in order to generate synthetic data of the vibrations. The
VAE is certainly able to generate data which resemble the physical data
qualitatively. Moreover, the generative process is confirmed to preserve
physicality at least partially: a transformer trained on synthetic data
only is capable of predicting the observed motions from physical exper-
iments to reasonable accuracy and with a similar performance to that
of the same architecture trained on real data. In that sense, the VAE
can be viewed as an object which learns the intrinsic characteristics
of the data and can thus be used as a data generator in order to
simulate the underlying physical process or to provide data for dataset
augmentations relatively cheap (VIV experiments cost from thousands
to millions of USD depending on scale). In addition, we anticipate that
with sufficient development and conditioning in the future, the VAE
could be used to simulate specific VIV conditions, in a fashion similar to
CFD codes: allowing one to predict fluid behavior in various conditions,
decreasing the need for extensive model testing.

A transformer architecture for forecasting unsteady and nonsta-
tionary vortex-induced vibrations, the VIVformer, is developed. The
VIVformer architecture combines multi-head attention modules and
fully connected network modules with residual connections in order
to forecast the vibrations’ time-series in both time and space. The ar-
chitecture is compared against benchmark deep-learning architectures
of DNN and LSTM networks and is shown to compare favorably on the
data. In addition, the architecture is shown to forecast flexible body
VIV in time–space reasonably accuracy both instantaneously and on
average.
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