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A B S T R A C T

A single-degree-of-freedom oscillator with a nonlinear restoring force and stochastic external forcing is studied
with the goal of understanding the distributions of certain response rates. Motivated by applications to ship
motions, the response rates concern the minimum response rate leading to capsizing (the critical response
rate) and a measurement comparing an observed response rate to the critical response rate (the split-time
metric), whose distributions are investigated both analytically and numerically. Three nonlinear restoring
forces are considered: piecewise linear (experiencing linearly softening stiffness above a ‘‘knuckle’’ point),
doubly piecewise linear (experiencing piecewise linearly softening stiffness above a ‘‘knuckle’’ point), and the
cubic softening restoring force of the Duffing oscillator. In the first two cases, an efficient numerical simulation
of the critical response rate and split-time metric is proposed from a derived distribution; in the latter case,
the density of the critical response rate is approximated assuming white noise excitation. A key interest is
in the nature of the right tail of the split-time metric, specifically as it relates to its extrapolation through
extreme value analysis in estimating the probability of capsizing. The distribution is found to have a ‘‘light’’
tail, which motivates the use of exponential rather than the generalized Pareto distribution for exceedances
above threshold in extreme value analysis. Finally, threshold selection through a prediction error criterion for
the exponential distribution is examined, and the Weibull distribution tail is suggested as a useful means for
a more refined examination of the distribution tail.
1. Introduction

The focus of this work is on certain questions related to a single-
degree-of-freedom nonlinear oscillator given by

�̈�(𝑡) + 2𝛿�̇�(𝑡) + 𝑟(𝑥(𝑡)) = 𝑦(𝑡), (1.1)

with a softening restoring force (stiffness) 𝑟(𝑥) that is characterized by
an unstable equilibrium, as e.g. in the special cases of piecewise linear
restoring forces depicted in Fig. 1. In (1.1), 𝛿 > 0 is a damping parame-
ter and 𝑦(𝑡) is an external stochastic excitation (forcing). Both suitable
correlated and white noise excitations will be considered below.

Nonlinear oscillators (1.1), with both stochastic and deterministic
excitation, play a central role in a wide range of areas and applications,
as canonical models for oscillatory phenomena. See e.g. Nayfeh and
Mook (2008), Belenky and Sevastianov (2007), or Hayashi (2014). Our
primary interest behind (1.1) relates to its use as a prototypical quali-
tative model of roll motion of a ship in irregular (random) beam seas.
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The model (1.1) incorporates the possibility of capsizing, understood as
the transition through the unstable equilibrium (for example, towards
another stable equilibrium or to diverge to infinity, depending on the
definition of the restoring force 𝑟(𝑥) for larger 𝑥 in the model). See e.g.
Belenky (1993) for a closed form solution to the capsizing probability
of the model (1.1) with a piecewise linear restoring force.

A numerical method to compute (estimate) capsizing probabilities
for the model (1.1) and also for more realistic and analytically in-
tractable systems (such as the actual dynamics of a ship) was proposed
by Belenky et al. (2008) and coined split-time. See also Belenky et al.
(2016, 2023) for an up-to-date review of the method. In the split-
time approach, calculation of the capsizing probability is reduced to
two separate less complex problems: one, the so-called non-rare prob-
lem, involves the rate of the upcrossing of an intermediate level of
a roll motion and, second, the so-called rare problem that focuses on
capsizing after an upcrossing. In the latter (rare) problem, a roll rate
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leading to capsizing is computed numerically at each upcrossing, called
a critical response rate. A split-time metric of capsizing is then formed
as the difference between the observed and the critical response rates,
with a positive difference corresponding to capsizing. The probability
of capsizing after upcrossing can then be found by extrapolating the
tail of the distribution of the split-time metric using the generalized
Pareto distribution (GPD) as suggested by Extreme Value Theory (see
e.g. Coles (2001)). The form of the GPD is recalled in Section 2.2.
The key advantage of the split-time method is that it lends itself to
reproducing a rare phenomenon such as capsizing, which would be too
costly to simulate directly with a simulation tool of reasonable fidelity.
The split-time method was applied to another rare event, the so-called
broaching-to in Belenky et al. (2017).

Though we are not aware of the split-time technique employed for
other rare phenomena, the approach is reminiscent of ideas employed
in the global stability analysis of dynamical systems. This is related,
in particular, to the domains (regions, basins) of attraction – the sets
of initial conditions with trajectories leading to a particular attractor
(equilibrium point) – especially in the context of multi-stable dynamical
systems (Battelino et al., 1988). Recent numerical methods for comput-
ing these domains and related quantities include (Najafi et al., 2016;
Datseris and Wagemakers, 2022; Stender and Hoffmann, 2022).

One striking feature of the GPD use is that it commonly suggests
the distribution of the critical response rate (and the split-time metric)
having ‘‘light’’ tails, characterized by a negative or zero shape parame-
ter of the GPD (e.g., Belenky et al. (2023)). In contrast, the distribution
of the response itself often has a ‘‘heavy’’ right tail, especially in rough
seas, characterized by a positive shape parameter of the GPD. The latter
phenomenon and, more generally, the tail structure of the distribution
of the response itself in the model (1.1) was studied and clarified
by Belenky et al. (2019), in the case of both correlated and white noise
excitations. In particular, a heavier distribution tail was the result of
softening restoring nonlinearity. In this work, we attempt to provide
an analysis similar to Belenky et al. (2019) but for the distributions
of the critical response rate (rather than the response itself) and split-
time metric. More specifically, our goals are to: (i) Confirm the light
character of the distribution tail of the critical response rate and
split-time metric for some forms of the nonlinear oscillator (1.1), for
both correlated and white noise excitations, (ii) Provide insight into
the structure of the distribution tail of the critical response rate and
split-time metric, and (iii) Understand implications of the findings on
extreme value analysis of the considered distributions. To the best of
our knowledge, this is the first paper to take a closer look at the
distribution of the critical response rate in a nonlinear oscillator (1.1)
and its distribution tails.

Regarding the third point above, our theoretical and empirical
analysis suggests that the distribution of the split-time metric is in the
domain of maxima attraction of the GPD with zero shape parameter,
that is, the exponential distribution. This motivates the use of the
exponential distribution, rather than the GPD, for exceedances above
threshold in extreme value analysis. We investigate this approach for
the derived distributions of the split-time metric, by using threshold
selection based on goodness-of-fit tests for the exponential distribution.
In fact, the exponential distribution was used for peaks over threshold
in Hydrology before the GPD was adopted as a more flexible model,
though threshold selection was made based on other considerations
(e.g. Rosbjerg et al. (1992) and Todorovic and Zelenhasic (1970)).

Finally, we compare the approach of peaks over threshold with the
exponential distribution to that with the distribution having a Weibull
tail. While the exponent in the exponential distribution has a power
equal to one, the power of the exponent in a Weibull-tailed distribution
can be different from one. For example, the tail of a Gaussian distribu-
tion is Weibull-tailed with the exponent equal to two. All Weibull-tailed
distributions are in the domain of maxima attraction of the exponential
distribution, but they offer a more refined representation of distribution
2

tails. In fact, our theoretical analysis of the distribution of the split-time
metric point to a Weibull tail and thus suggests using the approach of
peaks over threshold with Weibull-tailed distributions.

The paper by Belenky et al. (2023) also examines questions around
the split-time metric, but the focus there is on data and numerics from
ship motion programs and the context of ship stability. In contrast, this
study concerns the oscillator model and the data generated from this
model, providing complementary perspectives to the work of Belenky
et al. (2019). We also note that some elements of this work appeared
previously in the conference papers by Belenky et al. (2018a,b).

The rest of the paper is organized as follows. Section 2 includes
some preliminary background, specifying the exact cases of the model
(1.1) considered in this work, and also recalling the GPD and its use
in Extreme Value Theory and in working with the split-time metric.
The considered models are piecewise linear and doubly piecewise
linear oscillators with a correlated excitation, and a softening Duffing
oscillator with a white noise excitation. The distribution and its tails
for the critical response rate (and the split-time metric) in these models
are studied in Section 3. Section 4 contains some numerical results on
the distributions of the critical response rate and the split-time metric.
Section 5 concerns the use of the exponential distribution and the
distribution with a Weibull tail for peaks over threshold. Conclusions
can be found in Section 6.

2. Preliminaries

2.1. Description of models

We are interested in a single-degree-of-freedom nonlinear oscillator
given by (1.1), where 𝛿 > 0 is the damping parameter, 𝑦(𝑡) is a
random, mean zero excitation process and 𝑟(𝑥) is the restoring force.
More specifically, two forms of stochastic excitation are considered:
correlated and white noise. The correlated excitation is assumed to
be a mean zero, stationary Gaussian process with the spectral density
motivated by the ship rolling application, namely,

𝑠𝑦(𝜔) = 𝜔4
0

(

𝜔2

𝑔

)2
𝑠𝑤(𝜔), 𝜔 > 0, (2.1)

here 𝜔 is wave frequency, 𝜔0 is a natural frequency (both frequencies
n rad/s), and 𝑔 = 9.807 rad/s is gravitational acceleration. The
retschneider spectral density 𝑠𝑤(𝜔) is taken for wave elevation:

𝑠𝑤(𝜔) =
𝐴
𝜔5

𝑒−
𝐵
𝜔4 , 𝜔 > 0, (2.2)

here 𝐴 = 173𝐻2
𝑠 𝑇

−4
1 and 𝐵 = 691𝑇 −4

1 both depend on significant wave
eight, 𝐻𝑠 (in meters), and the period corresponding to mean frequency
f waves, 𝑇1 (in seconds). The factor 𝜔2∕𝑔 in (2.1) is a wave number
r spatial frequency of linear waves, and accounts for the roll motion
eing excited through the wave slope or wave spatial derivative. The
actor 𝜔4

0 accounts for the roll motion being excited by a moment of
ydrodynamic pressure forces.

The white noise excitation, on the other hand, can be viewed as a
generalized) derivative of the Wiener process, that is, 𝑦(𝑡) = 𝜎𝑓 �̇� (𝑡),
nd as having a constant spectral density

𝑦(𝜔) = 𝜎2𝑓 , (2.3)

here 𝜎𝑓 > 0 determines the strength of the excitation. Though the
broadband nature of the white noise forcing is certainly not realistic
for describing wave excitation, its use in the ship rolling application is
still relevant, since the ship roll motion is dominated by ship motion
inertia. Working with the white noise excitation will allow for more
analytic calculations with the model (1.1) that cannot be carried out
assuming correlated excitation.

In the case of correlated excitations, two types of the nonlinear
restoring force are considered. The piecewise linear restoring force is
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Fig. 1. The PWL (left plot) and DPWL (right plot) restoring forces.
given by

𝑟(𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−𝑘𝑤2
0
(

𝑥 + 𝑥𝑚
)

−𝑤2
0𝑥𝑚, if 𝑥 < −𝑥𝑚,

𝑤2
0𝑥, if − 𝑥𝑚 ≤ 𝑥 ≤ 𝑥𝑚,

−𝑘𝑤2
0
(

𝑥 − 𝑥𝑚
)

+𝑤2
0𝑥𝑚, if 𝑥 > 𝑥𝑚,

(2.4)

where 𝑤0 is a natural frequency in the linear regime (−𝑥𝑚, 𝑥𝑚), −𝑘𝑤2
0 <

0 is a negative slope in the nonlinear regime |𝑥| > 𝑥𝑚 with 𝑘 > 0 and
𝑥𝑚, called the ‘‘knuckle’’ point, defines the threshold above which the
system behaves nonlinearly, i.e. the point above which the restoring
force is decreasing. We shall refer to the oscillator associated with the
restoring force (2.4) as piecewise linear (PWL).

The doubly piecewise linear restoring force is given by: for 𝑥 > 0 and
with 𝑘1 > 0,

𝑟(𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑤2
0𝑥, if 0 < 𝑥 ≤ 𝑥𝑚,

−𝑘𝑤2
0
(

𝑥 − 𝑥𝑚
)

+𝑤2
0𝑥𝑚, if 𝑥𝑚 < 𝑥 ≤ 𝑥𝑚,1,

−𝑘1𝑤2
0
(

𝑥 − 𝑥𝑚,1
)

− 𝑘𝑤2
0
(

𝑥𝑚,1 − 𝑥𝑚
)

+𝑤2
0𝑥𝑚, if 𝑥𝑚,1 < 𝑥,

(2.5)

and 𝑟(−𝑥) = 𝑟(𝑥). It thus makes the decreasing linear part of the
piecewise linear restoring force to be piecewise linear itself. We shall
refer to the oscillator associated with the restoring force (2.5) as doubly
piecewise linear (DPWL).

We denote the respective points of vanishing stability, that is, the
points for which the restoring force becomes zero, by 𝑥𝜈 for the PWL
oscillator, and by 𝑥𝜈,1 for the DPWL oscillator. The restoring forces and
the introduced notation for the PWL and DPWL oscillators are depicted
in Fig. 1.

Though the use of a piecewise linear restoring force may seem
unnatural in connection to realistic forces, this turns out to be a useful
idealization that allows for analytic arguments in the case of correlated
excitation, and also retains most known nonlinear properties of an
oscillator with a similar smooth stiffness (Belenky, 2000; Belenky et al.,
2019). We consider the DPWL oscillator to assess how our findings for
the PWL system are affected by further nonlinearity in the restoring
force.

In the case of the white noise excitation (2.3), we shall consider the
restoring force

𝑟(𝑥) = 𝑘𝑥 − 𝑐𝑥3, 𝑘 > 0, 𝑐 > 0, (2.6)

associated with a softening Duffing oscillator. The methods described
in this paper are general enough to accommodate other nonlinear
restoring forces, although the calculations may be less tractable.
3

2.2. Split-time metric and its extrapolation through GPD

In the context of ship motions, the split-time metric gives a way to
describe how close one came to capsizing, even when capsizing did not
occur, conditioned on having crossed an intermediate threshold (that
is commonly taken to be large). The split-time metric is defined as

𝑑st = 1 + �̇�1 − �̇�cr , (2.7)

where �̇�1 is the observed response rate at the moment of upcrossing of
the threshold, and �̇�cr is the critical response rate which would lead to
capsizing. The value of the metric gives a ‘‘distance’’ to capsizing. In
particular, 𝑑st ≥ 1 corresponds to capsizing, and 𝑑st < 1 corresponds to
not capsizing. The probability of capsizing is then expressed as

P(capsizing) = P(crossing threshold) ⋅ P(𝑑st ≥ 1|crossing threshold)
=∶ P(crossing threshold) ⋅ P∗(𝑑st ≥ 1),

(2.8)

where P∗ refers to the conditional probability.
To estimate P(capsizing), a system of interest (e.g. (1.1)) is simu-

lated until a chosen intermediate threshold is crossed, at which point
the simulation is paused and the critical rate is found through a step
search, after which the procedure is continued till multiple values of
𝑑st are collected and multiple crossings have occurred. The probability
P(crossing threshold) can be estimated directly from the crossing fre-
quency. On the other hand, the probability P∗(𝑑st ≥ 1) is estimated by
applying techniques from Extreme Value Theory, as no observed values
of 𝑑st would typically be bigger than 1. More specifically, the peaks-
over-threshold (POT) approach (see e.g. Glotzer et al. (2017) or Coles
(2001)) is used, by writing first:

P∗(𝑑st ≥ 1) = P∗(𝑑st > 𝑢)P∗(𝑑st ≥ 1|𝑑st > 𝑢), (2.9)

where 𝑢 is an intermediate threshold of 𝑑st smaller than 1 and for which
there are 𝑑st > 𝑢. The non-rare probability P∗(𝑑st > 𝑢) is estimated as the
observed proportion of 𝑑st ’s exceeding 𝑢. The rare probability P∗(𝑑st ≥
1|𝑑st > 𝑢) is estimated by fitting a generalized Pareto distribution to 𝑑st
above 𝑢 and using it to extrapolate to the capsizing value 𝑑st = 1.

It is well known that under general conditions the distribution of
exceedances above a sufficiently large threshold from a sequence of
i.i.d. (independent identically distributed) random variables is well ap-
proximated by a generalized Pareto distribution (GPD; see e.g. Pickands
(1975) or Coles (2001)). Its complementary distribution function is

𝐹 𝜇,𝜉,𝜎 (𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

(

1 + 𝜉(𝑥−𝜇)
𝜎

)−1∕𝜉
, 𝜇 < 𝑥, if 𝜉 > 0,

𝑒−
𝑥−𝜇
𝜎 , 𝜇 < 𝑥, if 𝜉 = 0,

(

1 + 𝜉(𝑥−𝜇)
)−1∕𝜉

, 𝜇 < 𝑥 < 𝜇 − 𝜎 , if 𝜉 < 0,

(2.10)
⎩ 𝜎 𝜉
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where the parameters are 𝜉 (shape), and 𝜎 (scale), and 𝜇 (threshold,
qual to 𝑢 in (2.9)). The sign of the shape parameter determines
hether the tail of the GPD is light (𝜉 ≤ 0) or heavy (𝜉 > 0). A GPD with

a light tail has an upper bound at 𝜇+(−𝜎∕𝜉) when 𝜉 < 0, while a heavy
tail has a power-law form. When 𝜉 = 0, the GPD is the exponential
distribution.

We also note that in theory, distributions having a power-law tail
are approximated by (are in the domain of attraction of) the GPD with
positive shape parameter 𝜉 > 0. Likewise, the domain of attraction of
GPD with negative shape parameter 𝜉 < 0 are distributions having an
upper finite bound and a suitable power-law behavior at that bound. In
fact, most other ‘‘light’’ distributions (normal, Weibull, etc.) are in the
domain of attraction of an exponential distribution, that is, the GPD
with 𝜉 = 0. In practice, the situation is a bit complex. For example,
estimated shape parameters for a normal distribution would typically
be negative, since the normal tail is lighter than the exponential tail.
From this more practical perspective, the GPD can be thought as a
flexible family of models for distribution tails, whose nature can range
from power laws (i.e. very heavy) to bounded from above (i.e. very
light). Though we also emphasize that this view is too simplistic, since
the GPD arises naturally in Extreme Value Theory as the distribution
to use for exceedances above large thresholds.

3. Distributions of response rates

We study here the distributions of the critical response rate and
the split-time metric for the models listed in Section 2.1: the PWL and
DPWL oscillators with correlated excitation (Sections 3.1 and 3.2 be-
low) and the Duffing oscillator with white noise excitation (Section 3.3
below).

3.1. PWL oscillator with correlated excitation

We are interested here in a critical response rate, that is, the rate
needed to capsize at the upcrossing of the process 𝑥(𝑡) of the level 𝑥𝑚.
We denote the value of the critical response rate as �̇�𝑐𝑟. The crossing
level is naturally taken as the ‘‘knuckle’’ point 𝑥𝑚 since the system
transitions into a nonlinear regime above this point.

For the PWL oscillator, the solution after the upcrossing of the
process of the level 𝑥𝑚 is given by

𝑥(𝑡) = 𝐴𝑒𝜆1𝑡 + 𝐵𝑒𝜆2𝑡 + 𝑥𝜈 , (3.1)

when the excitation is switched off after the upcrossing, and

𝑥(𝑡) = 𝐴𝑒𝜆1𝑡 + 𝐵𝑒𝜆2𝑡 + 𝑥𝜈 + 𝑝𝑢(𝑡), (3.2)

when the excitation is present. Switching off excitation above the
‘‘knuckle’’ point is natural since most of the excitation is expected to
be received through resonance which is not possible when the stiffness
is decreasing (see e.g. Belenky and Sevastianov (2007)). Here, 𝐴 and
𝐵 are constants determined by the initial conditions 𝑥(0) = 𝑥𝑚 and
̇ (0) = �̇�1,

𝜆1 = −𝛿 +
√

𝑘𝑤2
0 + 𝛿2 > 0, 𝜆2 = −𝛿 −

√

𝑘𝑤2
0 + 𝛿2 < 0, (3.3)

and 𝑝𝑢(𝑡) is a particular solution after the upcrossing, that is, the process
atisfying

�̈�𝑢(𝑡) + 2𝛿�̇�𝑢(𝑡) − 𝑘𝑤2
0𝑝𝑢(𝑡) = 𝑦(𝑡) (3.4)

and such that at time 0, the process 𝑥(𝑡) satisfying the linear equation

�̈�(𝑡) + 2𝛿�̇�(𝑡) +𝑤2
0𝑥(𝑡) = 𝑦(𝑡) (3.5)

upcrosses 𝑥𝑚. For later reference, we also let 𝑝(𝑡) be the process satis-
fying

�̈�(𝑡) + 2𝛿�̇�(𝑡) − 𝑘𝑤2
0𝑝(𝑡) = 𝑦(𝑡), (3.6)

without conditioning on the upcrossing of 𝑥(𝑡).
4

With the excitation switched off, we have

𝐴 =
�̇�1 + 𝜆2(𝑥𝜈 − 𝑥𝑚)

𝜆1 − 𝜆2
, 𝐵 = −

𝜆1(𝑥𝜈 − 𝑥𝑚) + �̇�1
𝜆1 − 𝜆2

(3.7)

and with the excitation on,

𝐴 =
�̇�1 − �̇�1 + 𝜆2(𝑥𝜈 + 𝑝1 − 𝑥𝑚)

𝜆1 − 𝜆2
, 𝐵 = −

𝜆1(𝑥𝜈 + 𝑝1 − 𝑥𝑚) + �̇�1 − �̇�1
𝜆1 − 𝜆2

,

(3.8)

where 𝑝1 = 𝑝𝑢(0) and �̇�1 = �̇�𝑢(0). The system capsizes when 𝐴 > 0,
leading to the following critical response rates: with the excitation
switched off,

̇ cr = −𝜆2(𝑥𝜈 − 𝑥𝑚) (3.9)

and with the excitation on,

̇ cr = −𝜆2(𝑥𝜈 − 𝑥𝑚 + 𝑝1) + �̇�1. (3.10)

Note that �̇�cr is constant when the excitation is switched off. To
understand the distribution of �̇�cr when the excitation is switched on,
we need to characterize the joint distribution of 𝑝1 and �̇�1. We shall
make a simplifying assumption that before the upcrossing of 𝑥𝑚, the
process 𝑥(𝑡) behaves as a Gaussian process, satisfying Eq. (3.5). This
implifying assumption is often made in the literature (e.g. Mohamad
nd Sapsis (2015)), and has been studied closer in Belenky et al. (2019).

By using a standard argument (e.g. Lindgren (2013), Section 8.3;
ólnes (1997), 161-162), the density of �̇�1, 𝑝1 and �̇�1 at the upcrossing

of 𝑥𝑚 is given by

𝐶0�̇�𝑓𝜇0 ,𝛴0
(𝑥𝑚, �̇�, 𝑝, �̇�), (3.11)

here 𝐶0 is a normalizing constant, 𝑓𝜇,𝛴 denotes the multivariate
ormal density with mean 𝜇 and variance 𝛴, and

0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0

0

0

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, 𝛴0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝜎2𝑥 𝜎𝑥�̇� 𝜎𝑥𝑝 𝜎𝑥�̇�
𝜎�̇�𝑥 𝜎2�̇� 𝜎�̇�𝑝 𝜎�̇��̇�
𝜎𝑝𝑥 𝜎𝑝�̇� 𝜎2𝑝 𝜎𝑝�̇�
𝜎�̇�𝑥 𝜎�̇��̇� 𝜎�̇�𝑝 𝜎2�̇�

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(3.12)

ith the entries in 𝛴0 denoting the corresponding covariances of the
rocesses satisfying (3.4) and (3.5). In particular, 𝜎𝑥�̇� = 0, 𝜎𝑝�̇� = 0 and
𝑥�̇� = −𝜎�̇�𝑝.

The normal density in (3.11) can be simplified and expressed more
onveniently through several conditioning arguments as follows. Note
hat

𝜇0 ,𝛴0
(𝑥𝑚, �̇�, 𝑝, �̇�) = 𝑓 (𝑥𝑚)𝑓 (�̇�, 𝑝, �̇�|𝑥 = 𝑥𝑚), (3.13)

here 𝑓 ’s on the right-hand side of the equation refer to the density of
and the conditional density of �̇�, 𝑝, �̇� given 𝑥 = 𝑥𝑚. As 𝑥𝑚 is constant,

o is 𝑓 (𝑥𝑚) and it can be incorporated into the normalizing constant in
3.11). On the other hand, a conditional distribution of a multivariate
ormal distribution is known to be normal as well and for the case of
nterest here, it can be computed as follows. Let 𝛴0,�̇�𝑝�̇� denote the 3 × 3

submatrix of 𝛴0 associated with the variables �̇�, 𝑝 and �̇�, 𝛴0,�̇�𝑝�̇�|𝑥 denote
he 3 × 1 vector (𝜎𝑥�̇� 𝜎𝑥𝑝 𝜎𝑥�̇�) consisting of covariances for �̇�, 𝑝, �̇� and
, respectively, 𝛴0,𝑥 = 𝜎2𝑥 and 𝜇0,�̇�𝑝�̇� denote the 3 × 1 zero vector of the
eans associated with �̇�, 𝑝 and �̇�, and 𝜇0,𝑥 = 0. The conditional density

n (3.13) is then the normal density 𝑓𝜇1 ,𝛴1
(�̇�, 𝑝, �̇�) with the mean and

ovariance given by

1 = 𝜇0,�̇�𝑝�̇� + 𝛴0,�̇�𝑝�̇�|𝑥𝛴
−1
0,𝑥(𝑥𝑚 − 𝜇0,𝑥) =

⎛

⎜

⎜

⎜

⎜

⎝

0
𝜎𝑝𝑥
𝜎2𝑥

𝑥𝑚
𝜎�̇�𝑥
𝜎2𝑥

𝑥𝑚

⎞

⎟

⎟

⎟

⎟

⎠

=∶

⎛

⎜

⎜

⎜

⎝

0

�̄�
̄̇𝑝

⎞

⎟

⎟

⎟

⎠

, (3.14)

𝛴1 = 𝛴0,�̇�𝑝�̇� − 𝛴0,�̇�𝑝�̇�|𝑥𝛴
−1
0,𝑥𝛴

′
0,�̇�𝑝�̇�|𝑥 =

⎛

⎜

⎜

⎜

⎜

⎜

𝜎2�̇� 𝜎�̇�𝑝 𝜎�̇��̇�

𝜎𝑝�̇� 𝜎2𝑝 −
𝜎2𝑝𝑥
𝜎2𝑥

− 𝜎𝑝𝑥𝜎�̇�𝑥
𝜎2𝑥

𝜎 − 𝜎𝑝𝑥𝜎�̇�𝑥 𝜎2 −
𝜎2�̇�𝑥

⎞

⎟

⎟

⎟

⎟

⎟

(3.15)
⎝

�̇��̇� 𝜎2𝑥 �̇� 𝜎2𝑥 ⎠
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(see e.g. Timm (2002), Section 3.3a). By this conditioning procedure,
we can thus rewrite the density (3.11) as

𝐶1�̇�𝑓𝜇1 ,𝛴1
(�̇�, 𝑝, �̇�), (3.16)

where 𝑥𝑚 is now absorbed into 𝐶1 and 𝜇1.
By using another conditioning but now on the variable �̇� and the

notation analogous to above, we can express the density (3.16) as
�̇�
𝜎2�̇�

𝑒−�̇�
2∕(2𝜎2�̇�)𝑓𝜇2(�̇�),𝛴2

(𝑝, �̇�), (3.17)

where

𝜇2(�̇�) = 𝜇1,𝑝�̇�+𝛴1,𝑝�̇�|�̇�𝛴
−1
1,�̇�(�̇�−𝜇1,�̇�) =

⎛

⎜

⎜

⎝

�̄� + 𝜎𝑝�̇�
𝜎2�̇�

�̇�

̄̇𝑝 + 𝜎�̇��̇�
𝜎2�̇�

�̇�

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

𝜎𝑝𝑥
𝜎2𝑥

𝑥𝑚 + 𝜎𝑝�̇�
𝜎2�̇�

�̇�
𝜎�̇�𝑥
𝜎2𝑥

𝑥𝑚 + 𝜎�̇��̇�
𝜎2�̇�

�̇�

⎞

⎟

⎟

⎠

, (3.18)

𝛴2 = 𝛴1,𝑝�̇� − 𝛴1,𝑝�̇�|�̇�𝛴
−1
1,�̇�𝛴

′
1,𝑝�̇�|�̇� =

⎛

⎜

⎜

⎜

⎝

𝜎2𝑝 −
𝜎2𝑝𝑥
𝜎2𝑥

−
𝜎2𝑝�̇�
𝜎2�̇�

− 𝜎𝑝𝑥𝜎�̇�𝑥
𝜎2𝑥

− 𝜎𝑝�̇�𝜎�̇��̇�
𝜎2�̇�

− 𝜎𝑝𝑥𝜎�̇�𝑥
𝜎2𝑥

− 𝜎�̇�𝑥𝜎�̇��̇�
𝜎2�̇�

𝜎2�̇� −
𝜎2�̇�𝑥
𝜎2𝑥

−
𝜎2�̇��̇�
𝜎2�̇�

⎞

⎟

⎟

⎟

⎠

.

(3.19)

The expression (3.17) for the density of �̇�1, 𝑝1 and �̇�1 shows that,
s expected, �̇�1 follows the Rayleigh distribution with parameter 𝜎2�̇�,

and that conditionally on �̇�1, the distribution of 𝑝1 and �̇�1 is bivariate
ormal with mean vector 𝜇2(�̇�1) and covariance matrix 𝛴2. Note that

only the mean depends on �̇�1.
These findings suggest that in practice, a sample of independent

opies of the vector (𝑝1, �̇�1)′ can be generated easily, and then substi-
tuted into (3.10) to get a sample of independent copies of �̇�cr , whose
distribution can then be examined using available exploratory tools.
This is pursued further in Section 4.

We note that an explicit expression for the density of 𝑝1 and �̇�1 can
also be obtained, after integrating out the variable �̇� in (3.17). But its
form is quite lengthy and will not be presented here. The same could
also be said about the distribution of the critical response rate. In fact,
as illustrated in Section 4 below, the distribution of the latter is close to
a normal distribution. This perhaps should not be that surprising since
the distribution of 𝑝1 and �̇�1 is (conditionally) normal. In particular, the
distribution tails of �̇�cr are determined by the normal distribution tails
of 𝑝1 and �̇�1.

The arguments presented above extend naturally to the split-time
metric defined in (2.7), that is,

𝑑st = 1 + �̇�1 − �̇�cr =

⎧

⎪

⎨

⎪

⎩

1 + �̇�1 + 𝜆2(𝑥𝜈 − 𝑥𝑚), with excitation off,
1 + �̇�1 + 𝜆2
× (𝑥𝜈 − 𝑥𝑚 + 𝑝1) − �̇�1, with excitation on,

(3.20)

in view of (3.9) and (3.10). Thus, with excitation off, the distribution
of the metric is just a shifted Rayleigh distribution. That is, the distri-
bution of the metric and its tail are completely determined by those of
the response rate at the upcrossing. When excitation is on, a sample of
independent copies of the metric 𝑑st can be generated efficiently in the
same way as for �̇�cr discussed above and examined through available
exploratory tools. The latter is pursued further in Section 4 below.

In fact, the asymptotic behavior of the distribution tail of 𝑑st with
turned on excitation can be derived easily. It follows from (3.17)–(3.19)
that the density of 𝑑st is

𝑓𝑑st (𝑦) = ∫

∞

0
𝑑�̇�∫R

𝑑𝑝 �̇�
𝜎2�̇�

𝑒−�̇�
2∕(2𝜎2�̇�)𝑓𝜇2(�̇�),𝛴2

(𝑝, �̇�+𝜆2𝑝−𝑦), 𝑦 ∈ R. (3.21)

ndeed, both integrals can be evaluated analytically. First, we rewrite
he multivariate normal density as a univariate normal density in 𝑝
only) by completing the square, i.e. writing

(𝑝, �̇� + 𝜆 𝑝 − 𝑦) ∝ 𝑒−
1
2 (𝐴𝑝

2−2𝐵𝑝+𝐶) = 𝑒−
𝐴
2 (𝑝−

𝐵
𝐴 )2 𝑒

− 1
2

(

𝐶− 𝐵2
𝐴

)

,

5

𝜇2(�̇�),𝛴2 2 r
here ∝ denotes ‘‘proportional to’’, and 𝐵 and 𝐶 depend on �̇� and
, while 𝐴 is a constant with respect to both. This allows writing the
ensity as

𝑑st (𝑦) ∝ ∫

∞

0
𝑑�̇� �̇�𝑒

− �̇�2

2𝜎2�̇� 𝑒
− 1

2

(

𝐶− 𝐵2
𝐴

)

∫R
𝑓 𝐵

𝐴 , 1𝐴
(𝑝)𝑑𝑝

= ∫

∞

0
𝑑�̇� �̇�𝑒

− �̇�2

2𝜎2�̇�
− 1

2

(

𝐶− 𝐵2
𝐴

)

, 𝑦 ∈ R,

(3.22)

here 𝑓𝜇,𝜎2 denotes the univariate normal density as in the multivariate
case. It can be seen that the exponent of the exponential function is
quadratic in both �̇� and 𝑦. A second application of completing the
square allows rewriting the exponential term with �̇� only, i.e.

𝑓𝑑st (𝑦) ∝ 𝑒
− 1

2

(

𝐶0−
𝐵20
𝐴0

)

∫

∞

0
𝑑�̇� �̇�𝑒

− 𝐴0
2

(

�̇�+ 𝐵0
𝐴0

)2

, 𝑦 ∈ R, (3.23)

where 𝐴0 is a constant, 𝐵0 is linear in 𝑦, and 𝐶0 is quadratic in 𝑦.
Next, we evaluate the remaining integral by a simple change of

variables. In particular,

∫

∞

0
𝑑�̇� �̇�𝑒

− 1
2𝐴0

(

�̇�+ 𝐵0
𝐴0

)2

= 1
𝐴0

⎡

⎢

⎢

⎣

𝑒
−

𝐵20
2𝐴0 + 𝐵0

√

𝜋
2𝐴0

(

erf
(

𝐵0
√

2𝐴0

)

− 1

)

⎤

⎥

⎥

⎦

,

where erf(𝑥) = 2
√

𝜋
∫ 𝑥
0 𝑒−𝑢2𝑑𝑢. Hence,

𝑓𝑑st (𝑦) ∝ 𝑒
− 1

2

(

𝐶0−
𝐵20
𝐴0

)

⎡

⎢

⎢

⎣

𝑒
−

𝐵20
2𝐴0 + 𝐵0

√

𝜋
2𝐴0

(

erf
(

𝐵0
√

2𝐴0

)

− 1

)

⎤

⎥

⎥

⎦

= 𝑒−
𝐶0
2 +

√

𝜋
2𝐴0

𝐵0𝑒
− 1

2

(

𝐶0−
𝐵20
𝐴0

)

(

erf
(

𝐵0

2
√

𝐴0

)

− 1

)

, 𝑦 ∈ R.

Letting 𝐵′
0 ∶=

𝐵0
√

2𝐴
, we can rewrite this as

𝑓𝑑st (𝑦) ∝ 𝑒−
𝐶0
2
[

1 +
√

𝜋𝐵′
0𝑒

𝐵′2
0
(

erf
(

𝐵′
0
)

− 1
)

]

, 𝑦 ∈ R. (3.24)

Now, 1+
√

𝜋𝑥𝑒𝑥2 (erf(𝑥)−1) ∼ (2𝑥2)−1, as 𝑥 → ∞. Since 𝐶0 is quadratic
n 𝑦 and 𝐵0 is linear in 𝑦, it follows from (3.24) that, as 𝑦 → ∞,

𝑑st (𝑦) ∼ 𝑎 𝑒
−𝑏(𝑦−𝑐)2

𝑦2
,

for some constants 𝑎, 𝑏, 𝑐. Then, the tail of the corresponding CDF
satisfies: as 𝑥 → ∞,

∫

∞

𝑥
𝑓𝑑st (𝑦)𝑑𝑦 ∼ 𝑎∫

∞

𝑥

𝑒−𝑏(𝑦−𝑐)2

𝑦2
𝑑𝑦 ∼ 𝑎𝑏1∕2 ∫

∞

𝑏1∕2(𝑥−𝑐)

𝑒−𝑧2

𝑧2
𝑑𝑧

∼ 𝑎𝑏1∕2 𝑒−(𝑏1∕2(𝑥−𝑐))2

2(𝑏1∕2(𝑥 − 𝑐))3
∼ 𝑎𝑒−𝑏(𝑥−𝑐)2

2𝑏𝑥3
, (3.25)

here the asymptotic relation before last can be derived by integration
y parts and the asymptotics of the tail of normal CDF (e.g. Small
2010), p. 44). Thus, one can write the tail of the CDF as

∫

∞

𝑥
𝑓𝑑st (𝑦)𝑑𝑦 = 𝑒−𝐿(𝑥)𝑥

2
, (3.26)

here the function 𝐿(𝑥) is such that 𝐿(𝑥) → 𝑏 as 𝑥 → ∞. The CDF
ail then has the form (5.3) in Section 5.2 below and as noted in
hat section, it is in the domain of attraction of the GPD with shape
arameter 𝜉 = 0.

Finally, we note that since �̇� > 0, the second argument �̇�+𝜆2𝑝−𝑦 of
he bivariate normal density can only get larger as 𝑦 → −∞ and hence
he integrand of (3.21) can only get smaller. On the other hand, 𝑦 → ∞
ould be compensated by larger �̇� > 0 in the same second argument.
his suggests that the left-tail of the density (3.21) is lighter than the
ight tail. We also see this in the numerical illustrations in Section 4.1.
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𝑥

𝑥

𝑥

3.2. DPWL oscillator with correlated excitation

We now turn to the DPWL oscillator, and suppose that the excitation
is present in the regime 𝑥𝑚 < 𝑥 < 𝑥𝑚,1 but is switched off in the regime
𝑥 > 𝑥𝑚,1. As in (3.9), we know that the critical response rate in the
regime 𝑥 > 𝑥𝑚,1 is

̇ cr,1 = −𝜆2,1(𝑥𝜈,1 − 𝑥𝑚,1), (3.27)

where as in (3.3),

𝜆1,1 = −𝛿 +
√

𝑘1𝑤2
0 + 𝛿2 > 0, 𝜆2,1 = −𝛿 −

√

𝑘1𝑤2
0 + 𝛿2 < 0. (3.28)

Since the solution in the regime 𝑥𝑚 < 𝑥 < 𝑥𝑚,1 is still given by (3.2), the
critical response rate for the DPWL oscillator should now satisfy: with
̇ = �̇�cr and 𝑡 = 𝑡cr ,
{

𝐴(�̇�)𝑒𝜆1𝑡 + 𝐵(�̇�)𝑒𝜆2𝑡 + 𝑥𝜈 + 𝑝𝑢(𝑡) = 𝑥𝑚,1,

𝜆1𝐴(�̇�)𝑒𝜆1𝑡 + 𝜆2𝐵(�̇�)𝑒𝜆2𝑡 + 𝑝𝑢′(𝑡) = −𝜆2,1(𝑥𝜈,1 − 𝑥𝑚,1),
(3.29)

where 𝐴 = 𝐴(�̇�) and 𝐵 = 𝐵(�̇�) are given in (3.8).
We are interested in solving (3.29) numerically. In order to do so,

we need to understand the structure of the process 𝑝𝑢(𝑡). By arguing as
for the PWL system in Section 3.2, one can show that conditionally on
̇ = �̇�1, the process 𝑝𝑢(𝑡) is Gaussian with mean

𝜇𝑝𝑢 (𝑡) =
𝛾𝑥𝑝(𝑡)

𝜎2𝑥
𝑥𝑚 +

𝛾�̇�𝑝(𝑡)

𝜎2�̇�
�̇� (3.30)

and covariance function

𝛾𝑝𝑢 (𝑡1, 𝑡2) = 𝛾𝑝(𝑡1 − 𝑡2) −
𝛾𝑥𝑝(𝑡1)𝛾𝑥𝑝(𝑡2)

𝜎2𝑥
−

𝛾�̇�𝑝(𝑡1)𝛾�̇�𝑝(𝑡2)

𝜎2�̇�
, (3.31)

where

𝛾𝑝(𝑡) = E𝑝(0)𝑝(𝑡), 𝛾𝑥𝑝(𝑡) = E𝑥(0)𝑝(𝑡), 𝛾�̇�𝑝(𝑡) = E�̇�(0)𝑝(𝑡)

and 𝑥(𝑡) satisfies the linear Eq. (3.5), and 𝑝(𝑡) satisfies the linear
Eq. (3.6). Thus, one can write

𝑝𝑢(𝑡) =
𝛾𝑥𝑝(𝑡)

𝜎2𝑥
𝑥𝑚 +

𝛾�̇�𝑝(𝑡)

𝜎2�̇�
�̇� + 𝜅(𝑡), (3.32)

where 𝜅(𝑡) is a Gaussian zero mean process with the same covariance
as 𝑝𝑢(𝑡), that is,

E𝜅(𝑡1)𝜅(𝑡2) = 𝛾𝑝(𝑡1 − 𝑡2) −
𝛾𝑥𝑝(𝑡1)𝛾𝑥𝑝(𝑡2)

𝜎2𝑥
−

𝛾�̇�𝑝(𝑡1)𝛾�̇�𝑝(𝑡2)

𝜎2�̇�
, (3.33)

This representation is known as the Slepian model for the particular
solution 𝑝(𝑡) after the upcrossing of 𝑥(𝑡) of the level 𝑥𝑚. See e.g. Lindgren
(2013), Section 8.4. The next elementary lemma clarifies the structure
of the process 𝜅(𝑡).

Lemma 3.1. With the above notation, we have the following representa-
tion:

𝜅(𝑡) = 𝑝(𝑡) −
𝛾𝑥𝑝(𝑡)

𝜎2𝑥
𝑥(0) −

𝛾�̇�𝑝(𝑡)

𝜎2�̇�
�̇�(0). (3.34)

Proof. The proof is elementary by checking that the process on the
right-hand side of (3.34) has the covariance function (3.31). □

By using (3.34), the representation (3.32) of the particular solution
𝑝𝑢(𝑡) can also be expressed as

𝑝𝑢(𝑡) =
𝛾𝑥𝑝(𝑡)

𝜎2𝑥
(𝑥𝑚 − 𝑥(0)) +

𝛾�̇�𝑝(𝑡)

𝜎2�̇�
(�̇� − �̇�(0)) + 𝑝(𝑡). (3.35)

This representation of 𝑝𝑢(𝑡) is most convenient when generating 𝑝𝑢(𝑡) in
practice.

Several approximations of 𝑝𝑢(𝑡) can be tried when substituting (3.35)
into (3.29). One approximation is

𝑝𝑢,app,1(𝑡) =
𝛾𝑥𝑝(0) + 𝛾 ′𝑥𝑝(0)𝑡

2
(𝑥𝑚 − 𝑥(0)) +

𝛾�̇�𝑝(0) + 𝛾 ′�̇�𝑝(0)𝑡
2

(�̇� − �̇�(0))
6

𝜎𝑥 𝜎�̇�
Fig. 2. A phase portrait of the Duffing oscillator, restricted to the heteroclinical orbit
connecting the unstable equilibria ±

√

𝑘∕𝑐.

+𝑝(0) + 𝑝′(0)𝑡

=
𝜎𝑥𝑝 + 𝜎𝑥�̇�𝑡

𝜎2𝑥
(𝑥𝑚 − 𝑥(0)) +

𝜎�̇�𝑝 + 𝜎�̇��̇�𝑡

𝜎2�̇�
(�̇� − �̇�(0))

+𝑝(0) + 𝑝′(0)𝑡. (3.36)

This approximation linearizes the covariance functions in (3.35) as
𝛾𝑥𝑝(𝑡) ≃ 𝛾𝑥𝑝(0) + 𝛾 ′𝑥𝑝(0)𝑡 and 𝛾�̇�𝑝(𝑡) ≃ 𝛾�̇�𝑝(0) + 𝛾 ′�̇�𝑝(0)𝑡, and the process
𝑝(𝑡) in (3.35) as 𝑝(𝑡) ≃ 𝑝(0) + 𝑝′(0)𝑡. As illustrated in Section 4, this
approximation is accurate till about 𝑡 = 1. Another approximation is

𝑝𝑢,app,2(𝑡) =
𝛾𝑥𝑝(𝑡)

𝜎2𝑥
(𝑥𝑚 − 𝑥(0)) +

𝛾�̇�𝑝(𝑡)

𝜎2�̇�
(�̇� − �̇�(0)) + 𝑝(0) (3.37)

(or without 𝑝(0)), which only simplifies the process 𝑝(𝑡) in (3.35) to
𝑝(0). This approximation does not appear accurate for larger 𝑡 – keep
in mind that the process 𝑝(𝑡) is stationary and its magnitude does not
seem negligible. See Section 4.

In Section 4, we will report on the distributions of the critical
response rate �̇�cr when solving (3.29) numerically, and also the dis-
tribution of the resulting split-time metric. The findings are similar to
those for the PWL oscillator.

3.3. Duffing oscillator with white noise excitation

We now turn to the Duffing oscillator with the restoring force 𝑟(𝑥)
in (2.6) and the white noise excitation 𝑦(𝑡) = 𝜎𝑓 �̇� (𝑡) characterized
by (2.3). Fig. 2 depicts a qualitative phase portrait of the (undamped,
unforced) system, limited to the heteroclinical orbit connecting the two
unstable equilibria 𝑥𝜈 = ±

√

𝑘∕𝑐. The point of upcrossing 𝑥(0) = 𝑥𝑚 and
the upcrossing response rate �̇�(0) = 𝑎 are also marked in the plot.

We define capsizing as crossing the heteroclinical orbit connecting
the two unstable equilibrium without later coming back to it and again
are interested in a critical response rate �̇�cr . Note that the rate �̇�cr
depends only on a future realization of white noise (and the upcrossing
threshold 𝑥𝑚). Capsizing, on the other hand, will also depend on the
rate at the upcrossing. In our calculations, we shall make the simpli-
fying assumption that capsizing is ‘‘monotone’’ in the rate, that is, if a
given rate leads to capsizing, then so would any larger rate (for a given
future realization of white noise).

Since the critical response rate is defined as the rate leading to
capsizing, note that

P𝑥𝑚 (�̇�cr ≤ 𝑎) = P𝑥𝑚 (capsize|�̇�(0) = 𝑎), (3.38)

where P𝑥𝑚 denotes a probability with respect to a future realization of
white noise, conditioned on 𝑥(0) = 𝑥𝑚. The white noise realizations in
the two events of (3.38) are the same: if a white noise realization is
such that �̇�cr ≤ 𝑎, then by monotonicity, one should be capsizing with
any larger velocity, including �̇�(0) = 𝑎; vice versa, if one is capsizing
for a white noise realization with �̇�(0) = 𝑎, then by monotonicity, this
also means that �̇� ≤ 𝑎 for such a realization.
cr
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In the rest of this section, we focus on computing the CDF of the
critical response rate �̇�cr using the right-hand side of (3.38). Strictly
speaking, our calculations will be approximate and expected to be
accurate only in certain regions. More specifically, to evaluate the
capsizing probability of interest, we consider only short time intervals,
which allows one to remove damping for its insignificant role and to
assume a small variance of the excitation. A short time interval can
be assumed if one is close to the heteroclinical orbit or if an initial
displacement 𝑥(0) = 𝑥𝑚 is large. Two cases must be handled separately,
according to whether the initial conditions 𝑎, 𝑥𝑚 are within or beyond
the heteroclinical orbit.

We first consider the case of starting within the orbit. Under the
assumptions above, we shall find the mean and the variance of the max-
imum response which will lead to the probability of interest by condi-
tioning on the maximum response being above the unstable equilibrium
𝑥𝜈 =

√

𝑘∕𝑐. Fig. 3, left plot, illustrates our approach.
Under the assumptions above, the equation for the mean 𝑥(𝑡) of the

rocess is

�̈�(𝑡) + 𝑘𝑥(𝑡) − 𝑐𝑥(𝑡)3 = 0; �̇�(0) = 𝑎, 𝑥(0) = 𝑥𝑚. (3.39)

By conservation of energy, the mean 𝑥max of the maximum response
onditional on �̇�(𝑡) = 0 satisfies

𝑘𝑥2max −
1
2
𝑐𝑥4max = 𝑎2 + 𝑘𝑥2𝑚 − 1

2
𝑐𝑥4𝑚 =∶ 2𝐸(𝑎, 𝑥𝑚). (3.40)

Solving this equation gives

𝑥max =

√

√

√

√−𝑘 +
√

𝑘2 − 2(𝑎2 + 𝑘𝑥2𝑚 − 1
2 𝑐𝑥

4
𝑚)𝑐

−𝑐
, (3.41)

which depends in a direct way on the initial conditions 𝑎, 𝑥𝑚. On the
heteroclinical orbit, 𝐸(𝑎, 𝑥𝑚) =

𝑘2

2𝑐 , so (3.41) simplifies to 𝑥max = 𝑥𝜈 .
Similarly, we can calculate the variance. The period of the nonlinear

scillator can be computed as follows. Note that, over a quarter of a
eriod 𝑇0(𝑎, 𝑥𝑚), we should have 𝑥(𝑡) go from 0 to 𝑥max. Then,

𝑇0(𝑎, 𝑥𝑚)
4

= ∫

𝑥max

0

𝑑𝑥
√

2𝐸(𝑎, 𝑥𝑚) − 𝑘𝑥2 + 1
2 𝑐𝑥

4
. (3.42)

For each choice of 𝑎, 𝑥𝑚, to make calculations tractable, substitute
the nonlinear oscillator with a linear one having the same natural
period of oscillation:

�̈�∗(𝑡) + 𝜔2
0(𝑎, 𝑥𝑚)𝑥

∗(𝑡) = 𝜎𝑓 �̇� (𝑡), 𝜔0(𝑎, 𝑥𝑚) =
2𝜋

𝑇0(𝑎, 𝑥𝑚)
, (3.43)

where 𝑥∗(𝑡) is the fluctuation around the mean 𝑥(𝑡) which is due to
hite noise. For this system, we have

2
𝑥∗ (𝑡) ∶= E𝑥∗(𝑡)2 =

𝜎𝑓 𝑡

𝜔2
0(𝑎, 𝑥𝑚)

−
𝜎𝑓 (sin 2𝜔0(𝑎, 𝑥𝑚)𝑡)

2𝜔3
0(𝑎, 𝑥𝑚)

(3.44)

(see e.g. Gitterman (2005), Section 8.2, p. 85). The time it takes for the
system to go from (𝑥(0), �̇�(0)) = (𝑎, 𝑥𝑚) to (𝑥max, 0) is

𝑇max(𝑎, 𝑥𝑚) = ∫

𝑥max

𝑥𝑚

𝑑𝑥
√

2𝐸(𝑎, 𝑥𝑚) − 𝑘𝑥2 + 1
2 𝑐𝑥

4
. (3.45)

This time has to be relatively small for our analysis to be valid. Thus,

𝜎2𝑥∗
|

|

|𝑥max
=

𝜎𝑓𝑇max(𝑎, 𝑥𝑚)

𝜔2
0(𝑎, 𝑥𝑚)

−
𝜎𝑓 (sin 2𝜔0(𝑎, 𝑥𝑚)𝑇max(𝑎, 𝑥𝑚))

2𝜔3
0(𝑎, 𝑥𝑚)

. (3.46)

In view of the developments above, we conclude that, under the
eteroclinical orbit,

𝑥𝑚 (capsize|�̇�(0) = 𝑎) = ∫

∞

𝑥𝜈
𝜑(𝑢; 𝑥max, 𝜎

2
𝑥∗
|

|

|𝑥max
)𝑑𝑢, (3.47)

where 𝜑(𝑢;𝜇, 𝜎2) is the density of a normal distribution with mean 𝜇
nd variance 𝜎2. Note that both 𝑥 and 𝜎2 |

| depend on 𝑎 and 𝑥 .
7

max 𝑥∗
|𝑥max

𝑚

fter a change of variables, and by (3.38), we can write the CDF of the
ritical rate (under the heteroclinical orbit) as

�̇�cr (𝑎) = 𝛷((𝑥𝜈 − 𝑥max)∕𝜎𝑥∗
|

|

|𝑥max
), (3.48)

here 𝛷(𝑧) = P(𝑁(0, 1) > 𝑧) is the tail of the CDF of the standard normal
istribution.

We now turn to the case of initial conditions being above the hete-
oclinical orbit. This approach is illustrated in Fig. 3, right plot. Here,
apsizing occurs for trajectories which remain outside the heteroclinical
rbit. Since 𝑥(𝑡) has no maximum in this case, we consider its variability
hen �̇�(𝑡) is minimized. It is straightforward to see from (3.40) that

̇ (𝑡) =
√

2𝐸(𝑎, 𝑥𝑚) − 𝑘𝑥(𝑡)2 + 1
2
𝑐𝑥(𝑡)4, (3.49)

hich is minimized when 𝑥(𝑡) = 𝑥𝜈 , hence

̇ min =
√

2𝐸(𝑎, 𝑥𝑚) −
1
2
𝑘2
𝑐
. (3.50)

We assume that the time it takes for 𝑥(𝑡) to go from 0 to 𝑥𝜈 is a
uarter of a period, i.e. (3.42) and (3.45) still apply, with 𝑥max replaced

by �̇�min. Thus, the variability, characterized by 𝜎2𝑥∗
|

|

|�̇�min
, is computed

as in (3.46). The probability of capsizing additionally depends on the
(horizontal) distance from (𝑥(𝑡), �̇�(𝑡)) = (𝑥𝜈 , �̇�min) to (𝑥het, �̇�min), where

het = 𝑥het(𝑎, 𝑥𝑚) is on the heteroclinical orbit. From (3.49), we find

het =

√

√

√

√
𝑘 −

√

2𝑐�̇�2min − 𝑘2

𝑐
, (3.51)

nd

�̇�cr (𝑎) = 𝛷((𝑥het − 𝑥𝜈 )∕𝜎𝑥∗
|

|

|𝑥max
). (3.52)

Calculations involved in differentiating to compute the density of the
critical rate have proven unwieldy. Simulation for the distributions
(3.48) and (3.52) are discussed in Section 4 below.

An argument can be extended to generate observations of �̇�, �̇�cr
and hence those of the split-time metric. Since �̇�1 depends on a past
realization of white noise and �̇�cr depends on the future, the joint
density of the rate and critical rate is given by

𝑓𝑥𝑚 (�̇�1 = 𝑏, �̇�cr = 𝑎) = 𝑓𝑥𝑚 (�̇�1 = 𝑏)𝑓𝑥𝑚 (�̇�cr = 𝑎), (3.53)

where the density of �̇�(0) is known explicitly from the Fokker–Planck-
Kolmogorov equation, yielding

𝑓𝑥𝑚 (�̇�(0) = 𝑎) = 𝐶𝑒
− 2𝛿

𝜎2𝑓
𝑎2

, (3.54)

where 𝐶 is a normalizing constant. See e.g. Belenky et al. (2019),
Eq. (3.1), and Sobczyk (1991), Theorem 1.6, p. 34 or p. 334. It follows
that the density of the split-time metric 𝑑st is

𝑓𝑥𝑚 (𝑑st = 𝑧) = 𝑓𝑥𝑚 (�̇�1−�̇�cr = 𝑧−1) = ∫

∞

0
𝑓𝑥𝑚 (�̇�1 = 𝑢+𝑧−1)𝑓𝑥𝑚 (�̇�cr = 𝑢)𝑑𝑢.

By Eqs. (3.48) and (3.3), and using integration by parts, we can write

𝑓𝑥𝑚 (𝑑st = 𝑧) = ∫

∞

0
𝐶𝑒

− 2𝛿
𝜎2𝑓

(𝑢+𝑧−1)2

𝑑𝐹�̇�cr (𝑢)

= 𝐶2 ∫

∞

0
𝐹�̇�cr (𝑢)(𝑢 + 𝑧 − 1)𝑒

− 2𝛿
𝜎2𝑓

(𝑢+𝑧−1)2

𝑑𝑢, (3.55)

where 𝐶2 is a normalizing constant.

4. Numerical results

We shall examine here the distributions of the critical response
rate and the split-time metric for the PWL and DPWL systems and
the Duffing oscillator through some available exploratory tools. This
includes simulation from these systems, both their direct simulation
and from the derived distribution of interest, and visual exploratory
analysis.
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Fig. 3. The path of 𝑥(𝑡) to 𝑥max(𝑎, 𝑥𝑚) and its variability characterized by 𝜎2
𝑥∗
|

|

|𝑥max
, for choices of 𝑎 within (left) and beyond (right) the heteroclinical orbit connecting the two

unstable equilibria.
Fig. 4. The critical response rate for the PWL oscillator: Left: histogram with a numerically computed density; Middle: QQ-plot; Right: the shape parameter plot for the right tail.
Fig. 5. The split-time metric from the PWL oscillator: Left: histogram with a numerically computed density; Middle: the shape parameter plot for the right tail; Right: the QQ-plot
of the metric above median with the right-tail of a standard normal distribution.
Table 1
Parameter values in simulations.

Parameter PWL simulation DPWL simulation

𝑤0 0.6 0.6
𝛿 0.15𝑤0 = 0.09 0.09
𝑥𝑚 30𝜋∕180 = 0.52 0.52
𝑥𝑚,1 – 𝑥𝑚 + 1

2
(𝑥𝜈 − 𝑥𝑚)

𝑘 0.5 0.5
𝑘1 – 1.5
𝐻𝑠 9 9
𝑇𝑚 15 15

4.1. PWL and DPWL oscillators

We generated 500,000 independent observations of the critical
response rates for the PWL oscillator, and 5,000 for the DPWL oscil-
lator. The parameter values for either set of the simulations are given
in Table 1, and are identical with the exception of the decreasing
linear segments of the restoring forces. See Fig. 1 for the graphical
representation of the forces.
8

Fig. 4 depicts several exploratory plots for the critical response rate
generated from the PWL oscillator. The left plot shows the histogram
and numerically computed density. The middle plot is the standard
normal quantile plot. The right plot is the shape parameter plot for
the right distribution tail, that is, the plot of estimated shape param-
eter values with confidence intervals against selected thresholds. The
confidence bands are indicated in dashed dotted lines, in yellow for the
upper boundary and in red for the lower boundary. A horizontal dashed
line starts from the smallest threshold for which the estimate falls
within confidence bands for all larger thresholds. The histogram and
numerically computed density appear normal. The quantile plot shows
little deviation from normal quantiles, except perhaps with slightly
lighter tails. The shape parameter plot for the right tail estimate a shape
parameter of about 𝜉 = −0.1, although 𝜉 = 0 is not outside the confi-
dence bounds, which is consistent with the estimated shape parameter
from the normal distribution. Thus, all three plots suggest agreement
that the distribution of the critical response rate is close to normal.
As the quantile plot shows alignment with the normal distribution in
both tails and the normal distribution tails are symmetric, the shape
parameter plot for the left tail is unsurprisingly similar to that for the
right tail and is excluded for shortness sake. The shape parameter plot
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Fig. 6. The particular solution (after the upcrossing of the process) and its approximations. The three plots are for three realizations.
Fig. 7. The critical response rate from the DPWL oscillator: Left: histogram; Middle: QQ-plot; Right: the shape parameter plot for the right tail.
for the right tail is included, in part, to illustrate how such plots look for
distributions with normal-like tails. Fig. 5 shows similar plots but for
the split-time metric from the PWL oscillator, focusing on the behavior
of the right tail. The plots similarly suggest that the tail appears close
to that of a normal distribution.

Considering the DPWL oscillator, three realizations of the particular
solutions 𝑝𝑢(𝑡) and its two approximations discussed in Section 3.2 are
depicted in Fig. 6 solely for illustration purposes. The plots suggest
that the first approximation (linearizing 𝑝, in green) is quite accurate,
typically until approximately 𝑡 = 1, and that the second approximation
(linearizing 𝑟, in blue) is less accurate.

By using the parameter values above, we generated 5,000 inde-
pendent copies of the critical response rates for the DPWL oscillator.
Fig. 7 depicts the histogram, the normal quantile plot, and the shape
parameter plot for the right tail, as in Fig. 4. The results of the
exploratory analysis are not too different from those for the PWL
oscillator. In particular, the distribution of the critical response rate
is close to normal: the histogram appears normal, and the quantile
plot may indicate a lighter tail on the left, and a heavier tail on the
right, as compared to the normal distribution. The shape parameter plot
estimates a shape parameter of about 𝜉 = −0.2, and 𝜉 = 0 is not outside
the confidence bounds, which is consistent with the estimated shape
parameter from a normal distribution. Thus, all three plots suggest that
the distribution of the critical response rate is close to normal. The
figure of the split-time metric for the DPWL oscillator also turns out to
be similar to Fig. 5 for the PWL oscillator and is excluded for shortness
sake.

4.2. Duffing oscillator

Here, we compare the oscillators above to the Duffing oscillator
discussed in Section 3.3. We generated 10,000 independent copies of
the critical response rate with parameter values 𝜔0, 𝛿,𝐻𝑠, 𝑇𝑚, as in
Table 1, and 𝑥𝑚 = 0.3, 𝑘 = 1, 𝑐 = 3. For the excitation, 𝜎𝑓 = 0.0730,
to approximately match the frequency of upcrossings of 𝑥𝑚 as would
occur in the linear case.

The CDF of the critical rate (see (3.38), (3.47), (3.48) and (3.52))
was numerically calculated for values of 𝑎 from 0 to 3 with a stepsize
of 0.0005, and the density was estimated through differencing. The
9

sample is gathered from this density through rejection sampling and
its histogram and estimated density are depicted in Fig. 8 (left plot).
The middle and right plots show the shape parameter plots for both
the right and left tails; unsurprisingly, negative shape parameters are
estimated in both cases. The shape parameter plot for the left tail is
given as that for the right tail of the critical rate values taken with a
negative sign.

Additional 10,000 independent copies of the split-time metric were
generated directly from independent samples of the rate (taken from
a half-normal distribution) and critical rate, and following Eq. (2.7).
Exploratory plots are depicted in Fig. 9, including a histogram with
a numerically computed density, a shape parameter plot for the right
tail, and a QQ-plot for the right tail only. As in the cases of the PWL
and DPWL oscillators discussed in Section 4.1, a shape parameter value
of 𝜉 = 0 is within confidence bounds, which is consistent the tail of a
normal distribution. The QQ-plot though indicates some deviation from
a normal tail.

5. Implications for extreme value analysis and other distribution
fits

We discuss here briefly several statistical implications of the find-
ings in the previous sections, namely, concerning the uses of the expo-
nential distribution (Section 5.1) and the distribution with a Weibull
tail (Section 5.2) in the POT approach.

5.1. POT approach with exponential distribution

The results of Sections 3 and 4 suggest (and in some cases show)
that the distribution of the split-time metric for the considered models
is in the domain of maxima attraction of the GPD with the shape
parameter 𝜉 = 0, that is, the exponential distribution. A natural
question then is whether the POT approach described in Section 2.2
could be used with the exponential distribution for extrapolation above
threshold, instead of the GPD. In fact, the POT approach has originated
in Hydrology with using the exponential distribution for POT (see e.g.
Ekanayake and Cruise (1993), Madsen et al. (1993) and references
therein) though the setting in these early works is slightly different
from that considered here (e.g. a threshold is selected based on the
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̂

Fig. 8. The critical response rate from the Duffing oscillator: Left: histogram with a numerically estimated density; Middle: the shape parameter plot for the right tail; Right: the
shape parameter plot for the left tail.
Fig. 9. The split-time metric from the Duffing oscillator: Left: histogram with a numerically estimated density; Middle: the shape parameter plot for the right tail; Right: the
QQ-plot of the metric with the right-tail of a standard normal distribution.
exceedance times following a Poisson process). We also note that fitting
the exponential distribution above threshold is essentially equivalent
to fitting the Gumbel distribution (one of the three extreme value
distributions) to block maxima (e.g. see Gomes and Guillou (2015)).

In attempting to use the POT approach with the exponential distri-
bution, the choice of a threshold (denoted 𝑢 in (2.9)) is critical. The
methods of threshold selection that we have been using are based on
either the goodness-of-fit tests for the exponential distributions (Spineili
and Stephens, 1987) or a prediction error criterion (Mager, 2015). In
the first approach, for a range of intermediate thresholds, we would test
if the data above a given threshold is consistent with the exponential
distribution (at some significance level 𝛼) and then choose the smallest
threshold for which this consistency holds (the null hypothesis not
rejected), including all larger thresholds. But we also found that for this
method to work, the significance level should be quite large (say 𝛼 =
30% or 40%). Choosing large 𝛼 will lead to larger selected threshold and
fewer observations above the threshold, and thus also larger associated
uncertainty (wider confidence intervals).

In the second approach, a threshold is chosen based on a prediction
error criterion. More specifically, let 𝑋𝑛,𝑛 ≤ ⋯ ≤ 𝑋1,𝑛 be the order
statistics of a variable of interest, for example, the split-time metric 𝑑st .
A threshold 𝑢 = 𝑋𝑘+1,𝑛 or the index 𝑘 is then selected as

𝑘 = argmin
𝑘

𝛤 (𝑘). (5.1)

Here, the minimum is searched over some range of values 𝑘, with
Mager (2015) suggesting to use 𝑘 ∈ [max(40, 0.02𝑛), 0.2𝑛], though in
simulations for synthetic distributions, we sometimes find the results to
be sensitive to the choice of upper bound. The quantity 𝛤 (𝑘) is defined
as

𝛤 (𝑘) = 𝜎−2
𝑘
∑

𝑖=1

(𝑘 + 1
𝑖

− 1
)−1 (

𝑋𝑖,𝑛 − 𝑢 + 𝜎 log
( 𝑖
𝑘 + 1

))2

+ 2
𝑘

𝑘
∑

𝑖=1

(𝑘 + 1
𝑖

− 1
)−1

log2
( 𝑖
𝑘 + 1

)

− 1,

(5.2)

where 𝜎 is the scale parameter estimate of the exponential distribution
based on 𝑋 − 𝑢, 𝑖 = 1,… , 𝑘. See Mager (2015), bottom of p. 64.
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𝑖,𝑛
Fig. 10 illustrates the POT approaches based on the GPD (left plot)
and the exponential distribution (middle plot), applied to extrapolating
the distribution of the absolute value of the standard normal random
variable with sample size 𝑛 = 1000. A threshold for both methods is se-
lected automatically by using the prediction error criterion mentioned
above and found in Mager (2015). Each vertical line corresponds to a
separate independent replication, with the circle indicating the estimate
of the exceedance probability P(|𝑁(0, 1)| > 4.056) = 5×10−5 and the line
corresponding to the associated 95% confidence interval, all on a log
vertical scale. The horizontal line shows the target probability 5×10−5.
As expected, about 95% of the vertical lines include the true probability
in both GPD and exponential cases. But note that that confidence
intervals for the exponential case are narrower, which might be an
appealing feature for using the POT approach with the exponential
distribution in practice — again this is assuming the knowledge that
the data is from the distribution in the domain of attraction of the
exponential distribution, as suggested e.g. for the split-time metric
through the models analyzed above.

5.2. POT approach for distribution with Weibull tail

Instead of using the POT approach with the exponential distribution,
another interesting alternative is to use a POT approach for a distribu-
tion having a Weibull tail. More specifically, supposing 𝑋 is a variable
of interest (say positive), it is said to have a Weibull tail if

P(𝑋 > 𝑥) = 𝑒−𝐿(𝑥)𝑥
1∕𝜃

, 𝑥 > 0, (5.3)

where 𝜃 is a parameter and 𝐿(𝑥) is a slowly varying function at infinity,
satisfying 𝐿(𝑎𝑥)∕𝐿(𝑥) → 1 as 𝑥 → ∞ for any fixed 𝑎 > 0. Distributions
with Weibull tails are of interest here for several reasons. First, the
split-time metric in the models considered in Section 3 was either
proved or strongly suggested to have a Weibull tail (with 𝜃 = 0.5);
see (3.26). Second, from the GPD perspective, a distribution with a
Weibull tail falls in the domain of attraction of the GPD with zero shape
parameter, that is, the exponential distribution (e.g. Proposition 2, (ii)
in Gardes et al. (2011)). Distributions with Weibull tails then provide an
interesting flexible family of distribution tails for extrapolation when in
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̂

Fig. 10. The POT approaches based on the GPD (left plot), the exponential (middle plot) and the Weibull-tailed (right plot) distributions.
such a domain of attraction. Third, the parameter 𝜃 and its existence are
informative on their own. Fourth, as noted below, there is an analogous
POT approach for distributions with Weibull tails.

Indeed, numerous works in Extreme Value Analysis concern esti-
mation of 𝜃 and related questions. See, for example, Gardes and Girard
(2005, 2006), Diebolt et al. (2008), Asimit et al. (2010) and Gardes
et al. (2011). The POT approach for a distribution with a Weibull tail
is based on the observation that, for some critical value of interest 𝑥cr ,

logP(𝑋 > 𝑥cr ) = logP(𝑋 > 𝑢)
logP(𝑋 > 𝑥cr )
logP(𝑋 > 𝑢)

= logP(𝑋 > 𝑢)
𝐿(𝑥cr )𝑥

1∕𝜃
cr

𝐿(𝑢)𝑢1∕𝜃
≈ (logP(𝑋 > 𝑢))

(𝑥cr
𝑢

)1∕𝜃
,

(5.4)

where 𝑢 is an intermediate threshold and we used (5.3). As with
the usual POT approach involving GPD, the non-rare probability is
estimated directly from the data as a suitable sample proportion. The
rest of the procedure involves estimation of 𝜃 with a confidence interval
and also setting a threshold 𝑢.

The issue of threshold selection is seemingly not quite resolved in
the literature. See, in particular, Asimit et al. (2010), Statement 1, and
also Mercadier and Soulier (2012), Section 4. The approach that we use
adapts an ad hoc approach of Reiss and Thomas for GPD (see Neves
and Fraga Alves (2004)), wherein the usual bias–variance tradeoff in
estimation is exploited. More specifically, an index 𝑘 in 𝑢 = 𝑋𝑘+1,𝑛 (as
in Section 5.1, 𝑋𝑖,𝑛, 𝑖 = 1,… , 𝑛 denotes the order statistic) is chosen as

𝑘 = argmin
𝑘

1
𝑘

𝑘
∑

𝑖=1
𝑖𝛽
|

|

|

|

𝜃𝑘 − median
(

𝜃1,… , 𝜃𝑘
)

|

|

|

|

, (5.5)

where 𝛽 ∈ (0, 12 ] is fixed and 𝜃𝑘 is an estimate of 𝜃 based on 𝑋𝑖,𝑛, 𝑖 =
1,… , 𝑘. Moreover, the minimum is often considered for 𝑘 ≥ 𝐾 for some
fixed 𝐾 (e.g. 𝐾 = 20). Fig. 10, right plot, presents analogous estimation
results based on the POT approach with Weibull tail. The results are
comparable to the POT approach based on the exponential distribution,
though the latter tends to have slightly smaller confidence intervals.

6. Conclusions

In this work, we examined the distributions of the critical response
rate and split-time metric of the nonlinear oscillator given in (1.1).
We considered several forms of the restoring force, including piecewise
linear and doubly piecewise linear stiffness functions, as well as a
cubic restoring from the Duffing oscillator; and both correlated and
white noise excitations. The distributions were examined analytically in
some cases and also numerically, using techniques from Extreme Value
Theory such as the POT approach. Due to the nature of the observed
tail of the distributions of both the critical response rate and the split-
time metric, we considered modifying the POT approach to fit either
an exponential distribution or a Weibull tail for peaks above threshold.
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