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A B S T R A C T   

The paper summarizes almost three decades of research on the probability of ship capsizing in irregular waves. 
Reduced-order models (ROM) of roll with piecewise linear restoring are described. ROMs are capable of the 
presentation of the key feature of capsizing: transition to motions about upside-down stable equilibrium. The 
insight gained with these ROMs has paved the way towards a split-time method for engineering-level simulation 
tools. The modeling divides the capsizing problem into two parts: the upcrossing of an intermediate roll angle 
and the probability of capsizing after upcrossing. The split-time method enables a statistical characterization of 
capsizing event without observing one, using perturbation to generate synthetic data, containing information on 
the instantaneous likelihood of capsizing and enabling the application of extreme value theory.   

1. Introduction 

1.1. Capsizing as a random event 

The capsizing of a ship is the worst possible outcome of a stability 
failure. As a result, the probability of capsizing in realistic (i.e., random) 
seas is a natural criterion for the stability of a ship. Capsizing is a random 
event in irregular waves, so the concept of probability is fully applicable 
as probability is a measure of the likelihood of a random event. The 
rationality of a stability criterion expressed in terms of probability was 
considered by Kobylinski (1975). 

The probability of a random event occurring during a certain time 
interval (e.g. service life of a ship) is related to the duration of this in-
terval. Sevastianov (1963) considered the relationship of probability 
and time, particularly for the assessment of ship stability. The recogni-
tion of the relationship between time and probability casts the assess-
ment of ship stability as a general reliability problem (Sevastianov, 
1982, 1994; Caldwell and Yang, 1986, Chapter 1 of Belenky and Sev-
astianov 2007). In the International Maritime Organization (IMO) Sec-
ond Generation Intact Stability Criteria, see Section 3 of MSC.1/Circ. 
1627 (IMO, 2020), this relation is modeled as a Poisson process and 
performed within the probabilistic framework of direct stability 
assessment. Its theoretical background is available in Section 2 of SDC 

8/INF.2 (IMO, 2021). For a Poisson process, the probability of k events 
occurring within a time interval T is expressed as: 

P(k) =
(rT)k

k!
exp( − rT) (1)  

where r is the rate of random events. The rate r is usually interpreted as 
the probability of an event per unit of time. The probability of no events 
(i.e., no capsizing) corresponds to k= 0. 

Physically, capsizing is a transition from roll motions near one stable 
equilibrium to motions near another (upside-down) stable equilibrium, 
as illustrated in Fig. 1. While in real practice, the upside down equilib-
rium, most probably, will not occur due to machinery and cargo shifting, 
structural damage, downflooding, etc., it is still useful for a theoretical 
definition. 

A dynamical system capable of describing this transition has to 
include at least two stabile equilibria (upright and upside-down) as well 
as an unstable equilibrium between these two (angle of vanishing sta-
bility). This dynamical system is characterized by a significant nonlin-
earity. While the irregular sea wave elevations can be assumed Gaussian, 
the nonlinearity of the dynamical system means that the roll response 
will not have a Gaussian distribution. Moreover, capsizing is likely to 
violate the stationarity of the roll response process. These complexities 
leave time-domain simulation as the only way to model the capsizing of 
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a ship. 
The capsizing of an undamaged ship in a normal operational con-

dition is a rare event. As a result, the volume of sample, needed to es-
timate the probability of capsizing with direct time-domain numerical 
simulation, will be large, perhaps many thousand or even millions of 
hours. The computational cost of running an engineering-level numer-
ical simulation to generate a sample of the required size is likely to be 
prohibitive. This situation is recognized as the problem of rarity in 
Section 3.5.1 of MSC.1/Circ. 1627 (IMO, 2020). 

1.2. Probabilistic interpretation of weather criterion 

A solution to the problem of rarity is a simplified model of capsizing. 
The weather criterion is one the most mature of such simplified models, 
see Section 2.3 of the IS Code (IMO, 2008). The probabilistic interpre-
tation of the weather criterion seems to be a logical approach (e.g., 
Dudziak and Buczkowski, 1978), abridged version available in the 
Section 9.3.2 of (Belenky and Sevastianov, 2007). The result, however, 
is not consistent when compared with the probability, estimated from 
Monte-Carlo simulations, since it cannot be uniquely interpreted in 
terms of a choice of parameters values (Thanou, 2010; Peters and 
Belenky, 2023). 

1.3. Distribution of large roll angles and its tail 

Another approach is to approximate the distribution of the roll 
response in order to estimate the probability of exceedance of some large 
roll angle. This approach is reasonable as the influence of the unstable 
equilibrium on the distribution is limited to a relatively small interval 
close to this equilibrium (Belenky et al., 2019). As a result, the event of 
exceedance of an angle near the unstable equilibrium may have a 
probability that is not that different from the probability of capsizing. 
This feature is a result of the more general property that the shape of roll 
angle distribution is mostly defined by hydrostatics, i.e., by the geom-
etry of the hull. The relationship between the hull geometry and roll 
distribution was noted some time ago, as reported in the Section 8.6.2 of 
Belenky and Sevastianov (2007). 

Haddara and Zhang (1994) and Belenky (1994) approximated the 
distribution of roll angle with estimates of high-order moments, skew-
ness and excess of kurtosis – using Gram-Charlier and Edgeworth series. 
The method presents the probability density function (PDF) in terms of 
its moments and can be derived with the Hermite polynomials e.g., 
Section 8.6.2 of (Belenky and Sevastianov, 2007). While the method 
seems to be working for small-to-moderate nonlinearity, attempts to 
apply it to a case with a larger nonlinearity like the Office of Naval 
Research (ONR) Topside Series Tumblehome hull (Bishop et al., 2005), 
lead to oscillations of a curve approximating the PDF of roll angles; due 
to these oscillations, the curve takes negative values, indicating a bad 
approximation (Fig. 10 in Belenky and Weems, 2008). The authors have 
also considered the Pearson family of distributions, developed originally 
for biostatistics applications (Pearson, 1916). Further attempts to use 
the moment estimates for approximating the PDF of roll was abandoned 

because 1) relatively large uncertainty of the third- and fourth-order 
moment estimates caused by their sensitivity to outliers, and 2) how 
well this approximations represent the tail of the distribution was not 
clear. 

One of the simplest mathematical models of large-amplitude roll 
motion is a single ordinary differential equation where the hydrostatic 
and Froude-Krylov (incident wave) forces are separated. It is essentially 
a linear roll equation, where the nonlinearity is reintroduced in the form 
of a calm-water roll restoring arm (GZ) curve, e.g., chapter 3.6 of 
(Belenky and Sevastianov, 2007): 

(Ix + A44)ϕ̈ + B44ϕ̇ + ρg∇ GZ(ϕ) = ρg∇ GM α(t) (2) 

where Ix is the transverse moment of inertia of the “dry” hull, A44 is 
the added moment of inertia, B44 is the linear roll damping coefficient, ρ 
is water density, g is the acceleration of gravity, ∇ is volumetric 
displacement, ϕ is the roll angle measured with respect to the calm water 
level (i.e., in an absolute sense), a dot above the symbol identifies the 
time derivative, α is the angle of wave slope, and a dot above a symbol 
indicates a time derivative. Many variants of the model (2) exist. Some 
of them include additional terms for nonlinear roll damping and 
diffraction. Sometimes the angle of wave slope is substituted with the 
effective angle of wave slope that accounts for the finite size of a ship 
compare to the waves. The GZ curve is usually represented with a 
polynomial. In the case when cubic a parabola is applied, equation (2) 
becomes the Duffing equation. 

While not describing the full nonlinearity of ship motion, resulting 
from inseparability of hydrostatic and Froude-Krylov forces, these 
mathematical models are useful for their simplicity. The polynomial 
representation of the nonlinear restoring facilitates an asymptotic 
treatment of the moments (e.g., Nekrasov, 1994). A further simplifica-
tion would be to assume that wave excitation has a very broad spectrum, 
i.e., is white noise. This assumption makes the response a Markov pro-
cess; its distribution becomes a solution of the 
Fokker-Plank-Kolmogorov (FPK) equation. Moreover, a distribution of 
the time to reach a specified level can be found; this formulation is 
known as the First Passage Problem. 

FPK has been intensively engaged for the description of large- 
amplitude roll motions in irregular waves: Haddara (1974), Frances-
cutto (1998), Francescutto and Naito (2004), Su and Falzarano (2013) to 
name a few. The FPK approach has two problems. First, the spectrum of 
the actual wave excitation is not that wide (wave slope angle is not 
actually white noise). Second, the FPK equation is a differential equation 
in partial derivatives so its solution is not trivial. Both of these problems 
can be solved. For the first, a filter can be applied to white noise to model 
realistic wave excitation. For the second, path integration has been 
found to be an efficient way to solve the FPK equation, describing roll 
motion (Naess and Moe, 2000). In Kougioumtzoglou and Spanos (2014), 
path integration solved the First Passage Problem for roll motions 
modeled with Duffing equations and obtained a favorable comparison 
with direct Monte-Carlo simulations. 

Maki (2017) found a shape of the distribution by solving the FPK 
equation and assuming wave slope angle to be white noise. The auto-
correlation of the excitation does not affect hydrostatics, so the FPK that 
accounts for the nonlinearity related to hull geometry reveals the shape 
of the PDF. The PDF can then be scaled with a variance estimate from a 
relatively short Monte-Carlo simulation, also Maki et al. (2019, 2022). 

Actually, finding the entire distribution may not be necessary, as the 
extreme response is described by the tail of the distribution. Fitting the 
tail is the main subject of Campbell et al. (2023) and the reader is 
referred to that paper for a review of the tail-fitting approach. 

The mathematical background for distribution tail fitting lies in the 
extreme value theory (e.g., Coles, 2001). The principle is that the dis-
tribution of the largest values in a sample asymptotically follows a 
Generalized Extreme Value (GEV) distribution and does not depend on 
the underlying distribution (of roll motion, for the relevant application). 

Fig. 1. Capsizing as a transition to motion near the inverted stable equilibrium.  
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The first application of GEV to the capsizing probability problem has 
been attributed to McTaggart (2000) and McTaggart and de Kat (2000). 

1.4. Application of Crossing Theory and First-Order Reliability Method 

One way to relate the probability of exceedance with time is to apply 
the Crossing Theory (e.g. Sections 10 through 12 of Kramer and Lead-
better (1967), and its “engineering” adaptation in Section 9.1 of Belenky 
and Sevastianov, 2007). The upcrossing of a level is defined as a random 
event when a stochastic process has reached that level with a positive 
derivative, while the downcrossing uses the negative derivative. These 
crossings asymptotically follow Poisson process (1). To compute the rate 
of crossing, the joint distribution of roll angles and rates must be known. 
For example, upcrossing rate of roll angle for the level a is expressed as 
(Kramer and Leadbetter, 1967): 

r =

∫ ∞

0
ϕ̇ PDF(ϕ, ϕ̇)dϕ̇ (3)  

where ϕ is an instantaneous roll angle and a dot above the symbol 
identifies the time derivative. The roll angles ϕ and rates ϕ̇ are not 
correlated, but the absence of correlation means independence only for a 
Gaussian process. As roll is not Gaussian, the independence of roll angles 
and rates is an assumption. Belenky and Weems (2019) have demon-
strated that this assumption may hold for beam seas, but may not be 
valid for stern quartering seas where the stability variation in waves may 
be significant. 

If the assumption of independence is valid, a good approximation of 
the PDF of roll angle facilitates the calculation of upcrossing rate (3). 
The distribution of roll rate is usually assumed Gaussian as it is related to 
the nonlinearity of roll damping, which is relatively weak, compared to 
the nonlinearity of hydrostatic restoring. The validity of this assumption 
is discussed further in Section 2.11. 

Bulian and Francescutto (2004, 2011, 2011a) have avoided the dif-
ficulties of the approximation of the PDF of nonlinear roll. Instead, they 
considered an upcrossing of a linearized roll motion for an equivalent 
level of stability failure. This level is computed from a simplified energy 
balance of a nonlinear dynamical system, employing the principles of 
the weather criterion. The nonlinearity of the problem is essentially 
concentrated in the equivalent level of failure. The problem becomes 
linear and its rarity is addressed with a closed-form solution. The 
method was used for the formulation the second-generation intact sta-
bility criteria, see Section 2.2.3 of MSC.1/Circ. 1627 (IMO 2020). A brief 
description of theoretical background is available in Sections 3.3 and 3.4 
of SDC 8/INF.2 (IMO 2021). 

The linearization is also at the center of the First-Order Reliability 
Method (FORM). The non-Gaussian process of interest is transformed to 
a standard normal process, leading to an approximation for the crossing 
rate (Jensen and Capul, 2006). Literature on the application of FORM to 
large-amplitude ship motions is quite comprehensive, e.g., Jensen 
(2017), Jensen et al. (2017), Choi and Jensen (2019). 

1.5. Critical wave group approach 

In the transition from the upright to upside-down stable equilibrium, 
a ship needs to overcome a significant barrier, which can be expressed 
approximately as the area under the positive part of the GZ curve. To do 
so requires external energy from the waves. Obviously, capsizing is most 
likely to occur upon the encounter of a small number of large and steep 
waves within the random wave system. Sea waves have a group struc-
ture, so large waves are encountered in groups. Waves in a wave group 
are hydrodynamically related (Quasi-Determinism), see (Boccotti, 2000, 
2014), and the probability of encountering a wave group is a reflection 
of this hydrodynamic relation. 

Themelis and Spyrou (2007) considered a seaway as a sequence of 
dangerous wave groups separated by time intervals with only benign 

waves. As the wave groups are short (3–4 waves usually), the evaluation 
of a nonlinear ship response to a wave group is not an expensive 
calculation. A series of these evaluations can identify a critical wave 
group that would result in a large roll angle or capsizing. The probability 
(or rate) of encountering a critical wave group then provides an estimate 
of the probability of capsizing. Studies of the critical wave groups were 
directed toward better probabilistic models of the wave group them-
selves and the initial conditions upon encounter those wave groups 
(Anastopoulos and Spyrou, 2019, 2023). The computational efficiency 
of the wave group method allows the application of unsteady 
Reynolds-averaged Navier-Stokes (URANS) simulations (Silva and Maki, 
2021, Silva and Maki, 2024) or physical model test (Anastopoulos et al., 
2016; Bassler et al., 2019) to evaluate extreme ships responses. A subset 
of the critical wave group method, the critical wave method, is included 
in the IMO Interim Guidelines for the Second Generation Intact Stability 
Criteria, see Section 3.5.5.4 of MSC.1/Circ. 1627 (IMO 2020). 

The application of the critical wave group method will involve a set 
of nonlinear dynamical simulations of the response to the wave group. 
Since these responses will depend on the initial conditions for the 
simulation, it is necessary to characterize the ship’s conditions upon 
encountering a wave group. Those conditions are random, as they are 
result of the action of benign waves — the wave groups are assumed to 
be rare, so the system “forgets” encountering the previous wave group 
(s). Treatment of initial conditions for the critical wave group method is 
available from Themelis and Spyrou (2008) as well as from Anasto-
poulos and Spyrou (2019). Silva and Maki (2021) consider handling 
initial conditions for a URANS response simulation. Bassler et al. (2019) 
describe a possible model release mechanism, specially designed to 
control initial conditions for wave group experiments in a model tank. 

1.6. Wave episode approach 

The wave episode approach also uses the idea that capsizing results 
from a sequence of particularly large waves in an irregular seaway. It 
differs from the wave group approach as the hydrodynamic relation 
between the waves in the wave episode is not part of the formulation. 
Alford and Troesch (2009) describe a Dynamic Load Generator, which is 
based on a Longuett-Higgins model of irregular waves with amplitudes 
from a spectrum and random phases. The method searches for combi-
nations of the phases that lead to an expected roll response (Kim and 
Troesch, 2013, 2019). Edwards et al. (2021) proposed improvements to 
the method with an equivalent linear dynamical system that has the 
same zero-crossing period as the system of interest. 

To reduce the computational cost of high-fidelity simulation of a 
large-amplitude response, Mohamad and Sapsis (2018) employed 
adaptive sampling, which is based on Bayesian approach. The results of 
initial calculations are approximated with Gaussian process regression, 
which fits a mean value function of a non-stationary Gaussian process 
with available data (Rasmussen and Williams, 2006). These results are 
taken as “prior knowledge”. As the Gaussian process regression comes 
with an uncertainty quantification, the conditions for the next calcula-
tion can be chosen to minimize the uncertainty — this is “a posteriori 
knowledge.” The problem of initial conditions is considered by Guth and 
Sapsis (2022) with a “stochastic prelude” approach to capture the 
transitional behavior. 

Reed (2021) proposed the identification of extreme response events 
with a qualitatively correct, body-nonlinear reduced-order model of ship 
motions in wave. This reduced-order model computes hydrostatic and 
Froude-Krylov forces with a volume of the instantaneous submerged 
portion of the hull and is fast enough to resolve the extremes with 
reasonable computational costs (Weems and Wundrow, 2013; Weems 
et al., 2018; Weems and Belenky, 2023). The idea is somewhat similar to 
the Design Load Generator: to find sets of time, position and component 
waves phases leading to extreme responses. The difference is that this set 
is found through a massive Monte-Carlo simulation, identifying a 
number of wave events were an extreme responses were observed. The 
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same wave events are then simulated with higher fidelity code (potential 
flow or URANS) to estimate the extreme response with engineering ac-
curacy. The method strongly depends on the consistency between the 
reduced-order and engineering fidelity models (Weems et al., 2022). 
One of the advantages is that additional effort is not required to address 
the problem of initial conditions, as they can be taken directly from the 
ROM simulation. 

1.7. Extrapolation over wave height 

Another approach to the estimation of capsizing probability was 
proposed by Tonguć and Söding (1986). The probability of capsizing can 
be estimated with numerical time domain simulations in very severe sea 
conditions, for which capsizing becomes readily observable (i.e., not 
rare). The probability of capsizing in more realistic and less severe sea 
states can be found through extrapolation over the significant wave 
height. The method is included in the IMO interim guidelines for the 
Second Generation Intact Stability Criteria, see Section 3.5.5.3 of 
MSC.1/Circ. 1627 (IMO 2020). A description of the current state of the 
method is available from Shigunov (2023). Anastopoulos and Spyrou 
(2022, 2023b) have presented a formal argument on the equivalency 
between the extrapolation over the wave heights and the critical wave 
group method. Moreover, they have proposed and evaluated two 
improved formulae for extrapolation which retain the simple character 
of the original. Completing this comprehensive introduction, the authors 
would like to refer the reader to a comparative review of some of the 
described approaches, available in Wandji (2023). 

1.8. Objective and structure of the paper 

The objective of this paper is rather simple – to estimate probability 
of capsizing from relatively short numerical simulations without 
observing the event. The paper is a two-fold: study condition of 
capsizing with a Reduced-Order Model (ROM) and then apply this 
knowledge to engineering-level numerical simulation of ship motions in 
waves. 

A single-degree-of-freedom dynamical system with piecewise linear 
restoring is used as a ROM. The study of the ROM includes:  

• Demonstration that the ROM can model capsizing as transition to 
another equilibrium,  

• Demonstration that the ROM is qualitatively valid in terms of roll 
motions,  

• What are the conditions of capsizing and how to compute probability 
of capsizing in the simplest case?  

• How to include influence of wind and stability variation in waves?  
• Formulation of the lessons learned from ROM. 

Then the paper goes further into numerical applications of these 
“lessons learned”:  

• Formulation of a metric of likelihood of capsizing in a numerical 
dynamical system incorporating body-nonlinear formulation for 
hydrostatic and Froude-Krylov forces.  

• Study of extreme-value properties of the metric of likelihood of 
capsizing. 

• Completion of the estimate for probability of capsizing and numer-
ical examples. 

2. Piecewise linear system revisited 

2.1. Dynamical system without damping or excitation 

As capsizing is a transition to motion at the upside-down stable 
equilibrium (Fig. 1), a qualitative mathematical model of capsizing 
should include at least three equilibria: two stable and one unstable. 

Belenky (1989) considered a basic reduced-order model (ROM): a 
dynamical system with natural frequency ωϕ and a piecewise linear 
restoring f∗(ϕ), shown in Fig. 2. 

ϕ̈ + ω2
ϕf ∗(ϕ) = 0 (4)  

where: 

f ∗ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k2(ϕ + ϕm1) + k1(ϕ − ϕm0) − ϕm0; ϕ < − ϕm1

− k1(ϕ + ϕm0) − ϕm0 ; − ϕm1 ≤ ϕ < − ϕm0

ϕ ; − ϕm0 ≤ ϕ ≤ ϕm0

− k1(ϕ − ϕm0) + ϕm0 ; ϕm0 < ϕ ≤ ϕm1

k2(ϕ − ϕm1) − k1(ϕ − ϕm0) + ϕm0 ; ϕm1 < ϕ

(5) 

The slope coefficients for the piecewise linear terms k1 and k2 are 
defined as: 

k1 > 0 ; k2 =
k1(ϕm1 − ϕm0) − ϕm0

π − ϕm1
(6) 

The solution for the ordinary differential equation (4) for the range 
0 ( − ϕm0 ≤ ϕ ≤ ϕm0) and range 1 (ϕm0 < ϕ ≤ ϕm1) is expressed as: 

ϕ =

⎧
⎪⎪⎨

⎪⎪⎩

C1 cos
(
ωϕ(t − tm0)

)
+ C2 sin

(
ωϕ(t − tm0)

)
;

− φm0 ≤ φ ≤ φm0

A⋅exp
(

ωϕ

̅̅̅̅̅̅
k1

√
(t − tm1)

)
+ B⋅exp

(
− ωϕ

̅̅̅̅̅̅
k1

√
(t − tm1)

)
+ ϕv;

ϕm0 < ϕ ≤ ϕm1

(7) 

The solutions for other ranges are similar. The arbitrary constants 
depend on the initial conditions at the range 0 (ϕ0; ϕ̇0), taken at the time 
instant tm0, and range 1 (ϕ1; ϕ̇1), taken at the time instant tm1: 

C1 = ϕ0 , C2 =
ϕ0

ωφ

A =
ϕ̇1 + ωφ

̅̅̅̅̅̅
k1

√
(ϕ1 − ϕv)

2ωφ

̅̅̅̅̅̅
k1

√

B = −
ϕ̇1 − ωϕ

̅̅̅̅̅̅
k1

√
(ϕ1 − ϕv)

2ωφ

̅̅̅̅̅̅
k1

√

(8)  

Fig. 2. Phase plane topology of capsize and piecewise linear stiffness 
(Belenky, 1993). 

V. Belenky et al.                                                                                                                                                                                                                                 



Ocean Engineering 292 (2024) 116452

5

where ϕv is the position of unstable equilibrium: 

ϕv = ϕm0
k1 + 1

k1
(9) 

The solution (7) in range 1 contains an exponent with a positive 
argument. The sign of the arbitrary constant A defines the path of the 
solution. A transition to the range 2 in Fig. 2 will be followed by an 
attraction to the stable equilibrium at ±π, which means capsizing. The 
conditions for the transition are: 

(ϕm0 < ϕ ≤ ϕm1) ∩ (A > 0)⇒ϕ→π
( − ϕm1 ≤ ϕ < − ϕm0) ∩ (A < 0)⇒ϕ→− π (10) 

As the equilibrium transition problem in the unbiased dynamical 
system is symmetrical, only capsizing to starboard (through positive 
side) is examined further. Consider an instant of crossing into the range 
1 in Fig. 2. The value of the roll rate at the instant of upcrossing ϕm0 that 
leads to capsizing is the critical roll rate and is computed from the 
condition A > 0: 

ϕ̇cr = − ωϕ

̅̅̅̅̅̅
k1

√
(ϕm0 − ϕv) (11) 

The dynamical system (4) does model the transition to another stable 
equilibrium, but does not model attraction to this other equilibrium. 
From the phase plane in Fig. 2, the dynamical system is expected to show 
rotation upon crossing of the separatrix. 

2.2. Damped system without excitation 

To model a transition with further attraction to the capsized equi-
librium (Fig. 3), damping should be added to the dynamical system (4): 

ϕ̈ + 2δϕ̇ + ω2
ϕf ∗(ϕ) = 0 (12)  

where δ is a damping coefficient. The conditions of capsizing are 
expressed via critical roll rate at the instant of upcrossing of the 
boundary ϕm0: 

ϕ̇cr = −
(

δ +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k1ω2
ϕ + δ2

√ )
(ϕm0 − ϕv) (13)  

2.3. Damped system with periodic excitation 

To model capsizing in waves, excitation is added to the dynamical 
system (12): 

ϕ̈ + 2δϕ̇ + ω2
ϕf ∗(ϕ) = α sin(ωt) (14)  

where α is an amplitude and ω is the frequency of the wave excitation. 
The condition for capsizing at the boundary crossing instant is modified 
with the values of a particular solution p1 and its derivative ṗ1 at range 1: 

ϕ̇cr = −
(

δ +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k1ω2
ϕ + δ2

√ )
(ϕm0 − ϕv − p1) + ṗ1 (15)  

p1 = pa cos φ1, ṗ1 = − paω sin φ1, (16)  

pa =
α

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
ω2 + k1ω2

ϕ

)2
+ 4ω2δ2

√

φ1 = arctan
2ωδ

ω2 + k1ω2
ϕ

(17) 

Examples of capsizing and non-capsizing time histories are shown in 
Fig. 4. 

The dynamical system with piecewise linear restoring (14) models 
capsizing as a transition to motion around another stable equilibrium 
and provides a simple formulae for the conditions of capsizing. In order 
to determine whether the dynamical system (14) is a qualitatively cor-
rect description of a ship rolling in waves, its ability to reproduce known 
properties from other models of large-amplitude roll motions is inves-
tigated in Section 2.4. 

2.4. Period of free oscillations, fold bifurcation and other nonlinear 
properties of roll 

A period of large free roll motion is known to be dependent on the 
initial roll angle (e.g., Section 4.1.1 of Belenky and Sevastianov 2007). 
The dynamical system (4) has this property: a period of its free motions 
depends on the initial displacement for φ > φm0 (Belenky, 1995): 

Tϕ(ϕ0) =
4

ωϕ

̅̅̅̅̅
k1

√

(
1̅
̅̅̅̅
k1

√ arcosh
ϕv − ϕm0

ϕ − ϕ0

+arctan
ϕm0ωϕ

ωϕ

̅̅̅̅̅
k1

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(ϕv − ϕm0)
2
− (ϕv − ϕ0)

2
√

)

(18) 

The derivation of formula (18) can also be found in Section 4.1.2 of 
Belenky and Sevastianov (2007). This dependence is depicted in Fig. 5 in 
a form of the backbone curve. It bends left, showing soft-nonlinearity of 
restoring, which is consistent with the shape of the piecewise linear 
restoring term. 

The amplitude of the steady state solution near the upright equilib-
rium can be approximated with an equivalent linearization using the 
backbone curve (18), see Belenky (2000): 

ϕa =
α

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
ω2 − (ωB(ϕa) )

2 )2
+ 4ω2δ2

√

⇓

ω(ϕa) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(ωB(ϕa) )
2
− 2δ2 ±

̅̅̅̅̅̅̅̅̅̅̅̅̅
D(ϕa)

√√

(19)  

Fig. 3. Capsizing modeled with a dynamical system with piecewise linear 
restoring and damping without excitation (ϕm0 = 0.5 rad, ϕm1 = 2.5 rad, k1 =

0.7 rad s, ωϕ = 0.5 rad/s, δ = 0.05 1/s; ε is a small value, ε = 10− 3). 

Fig. 4. Capsizing modeled with a dynamical system with piecewise linear 
restoring and damping with excitation (ω = 0.5 1/s, α = 0.0288 rad; ε is a small 
value, ε = 10− 3, other parameters are same as in Fig. 3). 
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D(ϕa) =

(
α
ϕa

)2

− 4δ2( (ωB(ϕa) )
2
− δ2 )

ωB(ϕa) =
2π

Tϕ(ϕa)
(20) 

The response curve approximated with equivalent linearization (19, 
20) is shown in Fig. 5. Its shape indicates the existence of a frequency 
interval where three steady-state solutions are possible: two stable ones 
separated by an unstable one. The unstable steady-state solution cannot 
be realized for any appreciable time either numerically or physically. 
The choice between the two stable steady-state solutions is determined 
by initial conditions. This phenomenon is known as fold bifurcation, and 
has been extensively studied in nonlinear dynamics and observed in 
model tests (Francescutto et al., 1994). 

The response curve, computed by the numerical integration of 
equation (14) is shown in Fig. 5, confirming the existence of two stable 
steady state solutions. Calculations were performed for two sequences of 
excitation frequencies from high-to-low and low-to-high. Once the so-
lution is stabilized, the steady state values (roll angle, roll rate and time 
of sampling) were the initial conditions for the next frequency. The 
frequency interval of fold bifurcation, obtained numerically, is some-
what smaller compare to the one, shown by equivalent linearization. A 
possible reason for this is that the unstable solution is too close to the 
large-amplitude stable steady-state solution, leading to numerical ac-
curacy issues. 

The characteristics of a steady-state solution of a dynamical system 
with piecewise linear restoring can be accurately computed with a semi- 
analytical technique, as described in Belenky (2000). The values of roll 
rate at the instant of crossing the boundary ±ϕm0 are found as well as 
the time of these crossings, conditioned by the motion period being 
equal to the excitation period. This results in a system of five nonlinear 
algebraic equations, which can be solved numerically. Once these ele-
ments of steady-state solution are found, the amplitude is computed 
numerically. The technique also produces motion stability indicators: 
eigenvalues and trace-determinant of the Jacobian matrix (Section 4.4.4 
of Belenky and Sevastianov, 2007). While this semi-analytical technique 
did provide the required answers, continuation methods would be more 
computationally efficient and accurate (see e.g., Spyrou and Tigkas, 
2007). 

The motion stability analysis of the piecewise linear system (Belenky, 
2000) has proven that the frequency interval with multiple steady state 
solutions, depicted in Fig. 5, is associated with an escape of the eigen-
values through the positive direction, characteristic of a fold bifurcation. 

Flip bifurcation was also observed leading to deterministic chaos 
through period doubling. Essentially, the dynamical system with 
piecewise linear restoring demonstrates a bifurcation behavior similar to 
a typical qualitative model of nonlinear ship motions, e.g. Duffing 
equation with softening restoring see Section 4.5 of (Belenky and Sev-
astianov, 2007). 

Another important property of a dynamical system, relevant to large- 
amplitude roll and capsizing, is the fractal erosion of the safe basin (e.g., 
Rainey et al., 1990). The dynamical system with piecewise linear 
restoring does have this property as well (Belenky, 2000), leading to the 
conclusion that the piecewise linear system (14) is as valid qualitative 
model of large-amplitude roll motion, as a dynamical system with 
“smooth” restoring. 

The main advantage of the dynamical system with piecewise linear 
restoring is its ability to identify imminent capsizing at the instant of the 
crossing of the boundary ±ϕm0. It seems not to provide any computa-
tional advantages for the characterization of the entire motion, 
compared to a conventional numerical solution of ordinary differential 
equation. Essentially, dynamical system with piecewise linear restoring 
should be considered as a reduced-order model (ROM) for capsizing as a 
transition to another stable equilibrium see also (Weems et al., 2022). 

2.5. Random excitation and conditions of capsizing 

Calculation of probability of capsizing as a rare transition to another 
stable equilibrium in a piecewise linear dynamical system was recently 
revisited in Belenky et al. (2016). It is briefly reviewed here in order to 
remind the reader of the principal ideas. Consider the dynamical system 
(14) under stochastic excitation: 

ϕ̈ + 2δϕ̇ + ω2
ϕf ∗(ϕ) = αe(t) (21)  

where αe(t) is modeled with Fourier series: 

αe(t) =
∑N

i=1
αei sin (ωit+φ0i) (22) 

The amplitudes αei are determined from a spectrum, discretized with 
N frequencies ωi, while φ0i are random phase shift angles, uniformly 
distributed from 0 to 2π. 

Capsizing becomes a random event when the roll angle upcrosses the 
boundary ϕm0 while the roll rate at the upcrossing time instant ϕ̇1 ex-
ceeds the critical roll rate (15). Considering the capsizing as Poisson 
process (1), its rate can be presented as: 

rC = rU(ϕm0)P(ϕ̇1 > ϕ̇cr) (23)  

where rU(ϕm0) is the rate of upcrossing of the boundary ϕm0 and P stands 
for probability. 

Equation (23), which first appeared in Belenky (1989), expresses an 
important concept of separating the evaluation of the probability of rare 
event into two problems. The first problem, identified as the “non-rare” 
problem, is the calculation of the rate of upcrossing rU(ϕm0) over the 
boundary ϕm0. The second problem, identified as the “rare” problem, is 
determining which of these upcrossings will lead to capsizing, i.e., the 
calculation of the probability P(ϕ̇1 > ϕ̇cr). 

The idea to consider non-rare and rare problems separately is, 
essentially, not new. The concept of the tail of the distribution that is 
treated separately (e.g., Pickands, 1975) can be interpreted that way. 
Rarity of roll motion however also means a difference in physics caused 
by nonlinearity, which was implied in the term “principle of separation”, 
introduced in Belenky et al. (2012). Mohammad et al. (2016) indepen-
dently pursue a similar idea in their probabilistic 
decomposition-synthesis method. 

2.6. Non-rare problem: boundary upcrossing 

In the absence of capsizing, the upcrossing of the boundary ϕm0 is 

Fig. 5. Dynamical system with piecewise linear restoring (φm0 = 0.5 rad, φm1 
= 2.5 rad, k1 = 0.7 rad s, ωϕ = 0.5 rad/s), backbone and response curves for δ =
0.05 1/s and α = 0.0288 rad. 
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assumed rare and the dynamical system (21) does not spend much time 
above the boundary ϕm0. Ordinary differential equation (21) is linear 
within the intervals − ϕm0 ≤ ϕ ≤ ϕm0 and ±ϕm0 < ϕ ≤ ±ϕm1. Every 
time the boundary ±ϕm0 is crossed, a general solution of homogenous 
equation is generated. For the interval − ϕm0 ≤ ϕ ≤ ϕm0, this solution is 
a decaying oscillation with the frequency ωϕg (as external forcing is not 
included in the homogenous equation). The general solution at the in-
terval ±ϕm0 < ϕ ≤ ±ϕm1 is a sum of two exponential functions of time. 
Thus, the influence of general solutions on the distribution and its mo-
ments can be neglected, so the distribution of roll angles and rates can be 
assumed normal. As the system (21) is linear below ϕm0, the rate of 
upcrossings rU(ϕm0) is expressed as: 

rU(ϕm0) =
1

2π

̅̅̅̅̅̅
Vϕ̇

Vϕ

√

exp
(

−
ϕ2

mo

2Vϕ

)

(24)  

where Vϕ and Vϕ̇ are variances of roll angles and rates, respectively, 
which can be computed in the frequency domain, see equation (32) in 
subsection 2.9. 

2.7. Rare problem: distribution of roll rate at upcrossing 

The distribution of roll rates at the instant of upcrossing ϕ̇1 is a bit 
more subtle problem than it may appear. Belenky (1989, 1993) assumed 
a folded normal distribution for ϕ̇1, arguing that as roll angles and rates 
are independent, upcrossing can occur with any positive roll rate. The 
fallacy of this argument is that while roll angles and rates are inde-
pendent when sampled simultaneously at a random moment, the 
upcrossing is a particular moment, conditioned not only by positivity of 
the rate ϕ̇1 > 0 but also by crossing the boundary ϕ = ϕm0. As a result, 
the value of roll rate at the instant of upcrossing follows Rayleigh dis-
tribution, see e.g., p. 201 of (Leadbetter et al., 1983). An abridged 
derivation is also available from (Belenky et al., 2016): 

PDF(ϕ̇1) =
ϕ̇1

Vϕ̇
exp

(

−
ϕ̇

2
1

2Vϕ̇

)

(25) 

The Rayleigh distribution (25) is applicable to roll rate samples at all 
observed upcrossings. The process of roll motions has a relatively nar-
row spectrum and a typical decorrelation time is on the order of 1 min. 
That means that an upcrossing of the boundary ϕm0 will be likely fol-
lowed by one or more upcrossings at the subsequent periods. Thus, 
upcrossing events are likely to appear in clusters. The distribution of the 
roll rate at the instant of a particular upcrossing in such a cluster may be 
different from (25). For example, the distribution of the roll rate at the 
first upcrossing in a cluster has a shape of Rayleigh distribution, but its 
parameter is different from Vϕ̇ (Belenky et al., 2019). 

While the upcrossings through the boundary ϕm0 may not always 
follow Poisson flow, due to clustering, the dependence of capsizing 
events is of no concern, as it can occur only once in a record. As a result, 
Rayleigh distribution (25) can be applied for the roll rate values at the 
instant of upcrossing without limitations. 

2.8. Rare problem: difference between instantaneous and critical roll rate 

The difference between the instantaneous and critical roll rates is an 
indicator of the likelihood of capsizing. The roll rate at the instant of 
upcrossing ϕ̇1 is not the only random quantity in the rare problem 
P(ϕ̇1 > ϕ̇cr). The critical roll rate ϕ̇cr (equation 15) is a deterministic 
function of two random variables p0 and ṗ0. The condition of capsizing 
after upcrossing in irregular wave is expressed as the difference of two 
random quantities: 

ϕ̇1 − ϕ̇cr = ϕ̇d > 0 (26)  

where ϕ̇d(t) is the process of the difference between the instantaneous 
and critical roll rate: 

ϕ̇d(t) =
(

δ +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k1ω2
ϕ + δ2

√ )
(ϕm0 − ϕv − p(t) )

+ϕ̇(t) − ṗ(t)
(27) 

Formally, the process ϕ̇d(t) can be evaluated at any instant of time. 
However, it is relevant to capsizing only at the instant of upcrossing of 
the boundary ϕm0. Following Belenky et al. (2011), the condition of 
capsizing (26) can be re-written as: 

(ϕ̇d(t) > 0 ) ∩ (ϕ(t) = ϕm0 ) ∩ (ϕ̇(t) > 0 ) (28) 

Calculation the probability of capsizing after upcrossing requires 
evaluation of the probability of a positive value of the process ϕ̇d(t)
when another process ϕ(t) up-crosses the boundary ϕm0, while the 
processes ϕ̇d(t) and ϕ(t) are dependent. The distribution of ϕ̇d(t) is 
expressed as follows, see e.g., Section 8.3 of (Lindgren, 2013) or pp. 
161–162 of (Sólnes, 1997); abridged simplified derivation is available in 
Appendix to (Belenky et al., 2011): 

PDF(ϕ̇d) =

∫∞
0 ϕ̇⋅PDF(ϕ = ϕm0, ϕ̇, ϕ̇d)dϕ̇
∫∞

0 ϕ̇⋅PDF(ϕ = ϕm0, ϕ̇ )dϕ̇
(29) 

The process ϕ̇d(t) is a linear function of three other processes: roll 
rate ϕ̇(t), the particular solution in range 1 p(t) and its derivative ṗ(t). 
The process of roll rates ϕ̇(t) is assumed normal (due to small time spent 
beyond the boundary ϕm0), while the particular solution p(t) and its 
derivative ṗ(t) are normal as the dynamical system is linear within range 
1. Thus, ϕ̇d(t) is also normal and the evaluation of (29) should be 
possible. 

The derivation of the PDF (29) is available from Glotzer et al. (2024) 
and the reader is referred to that work for the complete argument, 
leading to the following result (using the nomenclature of the cited 
source): 

PDF(φ̇d)∝exp
(

−
C0

2

)

×

[

1 +
̅̅̅
π

√ B0
̅̅̅̅̅
A0

√ exp
(

B2
0

A0

)(

erf
(

B0
̅̅̅̅̅
A0

√

)

− 1
)]

(30)  

where A0 is a constant, B0 is a linear function of ϕ̇d and C0 is a quadratic 
function of ϕ̇d, while: 

erf(x)=
2̅
̅̅
π

√

∫ x

0
exp
(
− u2)du 

The tail of the distribution (30) is exponential, as shown by Glotzer 
et al. (2024). 

2.9. Simplified rare problem 

Equation (27) can be significantly simplified if the particular solution 
p(t) and its derivative ṗ(t) are assumed small. The particular solution p(t)
describes a response of the dynamical system to external forcing in the 
range 1, i.e., from the maximum of a restoring function to its minimum; 
the derivative of the restoring function is negative and the system is a 
repeller. Therefore, resonance is absent in range 1, see the amplitude of 
the particular solution p(t) in Fig. 6 (Belenky, 1989, 1993). 

This absence of resonance leads to: 

Vϕ̇≫Vṗ and Vϕ̇≫
(

δ +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k1ω2
ϕ + δ2

√ )2
Vp (31)  

where Vϕ̇,Vp and Vṗ are the variances of roll rates, the particular so-
lution in range 1, and its derivative, respectively: 
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Vϕ̇ ≈ 0.5
∑N

i=1

α2
eiω2

i
(

ω2
i − ω2

ϕ

)2
+ 4ω2

i δ2
(32)  

Vp = 0.5
∑N

i=1

α2
ei

(
ω2

i + k1ω2
ϕ

)2
+ 4ω2

i δ2
(33)  

Vṗ = 0.5
∑N

i=1

α2
eiω2

i
(

ω2
i + k1ω2

ϕ

)2
+ 4ω2

i δ2
(34) 

Assuming that the covariance between these processes is also small, 
the particular solution and its derivative in range 1 can be treated as 
deterministic and be substituted by their means, which are zeros. As a 
result, the critical roll rate ϕ̇cr becomes a constant (13) and the differ-
ence between the instantaneous and the critical roll rate becomes a 
function of a single random argument ϕ̇ and is expressed as: 

ϕ̇d(t) = ϕ̇(t) +
(

δ +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k1ω2
ϕ + δ2

√ )
(ϕm0 − ϕv) (35) 

The PDF of ϕ̇d becomes a shifted Rayleigh distribution: 

PDF(ϕ̇d) =
ϕ̇d + ϕ̇cr

Vϕ̇
exp

(

−
(ϕ̇d + ϕ̇cr)

2

2Vϕ̇

)

(36) 

The assumption of the negligibility of the particular solution p(t) and 
its derivative ṗ(t) is equivalent to the case of “no excitation above the 
boundary ϕm0” considered in Belenky et al. (2019) for the structure of 
the tail of the response distribution. The tail of the distribution (36) is 
exponential, similar to the case with the complete solution (30) – tail of 
Rayleigh distribution is known to be exponential. 

The application of the method with “no excitation above the 
boundary ϕm0” was executed by Iskandar et al. (2000, 2001) and 
Iskandar and Umeda (2001, 2001a). Folded normal distribution was 
used for the roll rate at upcrossing, as the error in (Belenky, 1989, 1993) 
was not found until (Belenky et al., 2008). Nevertheless, the numerical 
results seem to be reasonable (probability estimates were believable) – 
most likely because a folded normal distribution also has an exponential 
tail and is able to recover the correct behavior for small probabilities. 

2.10. Influence of wind 

The piecewise linear dynamical system (21) can model capsizing 
under the action of gusty wind along with irregular waves. This was 
implemented through a modification of the excitation: adding a mean 
value and changing its variance. The model in (Belenky, 1994) includes 
roll and sway, but the coupling is incomplete as the influence of roll on 
sway was not included: 
⎧
⎨

⎩

(M + A22)η̈ + RDη(η̇) = Fwη(t) + Faη(t)
(Ix + A44)ϕ̈ + B44ϕ̇ + ρg∇⋅GZ(ϕ) + A42η̈ + MDη(η̇)

= Mwη(t) + Maη(t)
(37)  

where η is horizontal displacement, i.e., sway and drift motion (under-
standing sway as a periodic component and drift as a slowly changing 
mean of this periodic component), M is the mass of the ship, A22 and A42 
are sway-sway and sway-roll added masses, respectively, RDη(η̇) and 
MDη(η̇) are the drag force in sway direction and its moment, Fwη(t) and 
Mwη(t) are the Froude-Krylov wave force and its moment, while Faη(t)
and Maη(t) are the aerodynamic (wind) force and its moment. 

The aerodynamic (wind) force is modeled as a stationary stochastic 
process with a non-zero mean value corresponding to the mean wind 
velocity. The latter is considered to be large in comparison with the sway 
and drift velocity η̇. A quadratic form is assumed for the drag force 
RDη(η̇). It is further linearized at the mean wind speed, leaving the GZ 
curve as the only nonlinearity in (37), which is modeled with the 
piecewise linear term (5). The sway equation in (37) becomes linear and 
produces a closed-form solution for the sway/drift velocity η̇. The sway/ 
drift velocity and its derivative η̈ are substituted into the roll equation 
(37) and become a part of the excitation, which is also modified by the 
wind moment Maη(t). As a result, the excitation has a mean value, 
corresponding to the mean wind velocity. 

Belenky (1994) modified the simplified solution for the rare prob-
lem. The particular solution was substituted by its mean value, leading 
to the following formula for the difference between the instantaneous 
and critical roll rate: 

ϕ̇d(t) = ϕ̇(t) +
(

δ +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k1ω2
ϕ + δ2

√ )
(ϕm0 − pm − ϕv) (38)  

where pm is a mean value of the particular solution p(t), reflecting steady 
drift. 

Paroka et al. (2006) provided a complete solution for the rare 
problem, including the influence of p(t) and its derivative on ϕ̇d(t), 
which is referred to as an “exact method” in the cited source. A com-
parison between the exact and simplified method shows little difference, 
though the simplified method appears to be more conservative for 
smaller mean wind velocities. Paroka et al. (2006) includes a study of a 
number of other influences and proposes an alternative simplification, 
which is to keep the derivative of the particular solution ṗ(t) but sub-
stitute p(t) with its mean value: 

ϕ̇d(t) =
(

δ +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k1ω2
ϕ + δ2

√ )
(ϕm0 − pm − ϕv)

+ϕ̇(t) − ṗ(t)
(39) 

Paroka and Umeda (2006) compared the solution (39) with the 
method by Bulian and Francescutto (2004) and a Monte-Carlo numerical 
simulation. The piecewise linear solution underpredicts the probability 
of capsizing, especially for large values of the mean wind velocity. As the 
problem with folded normal distribution of the roll rate at the instant of 
upcrossing was not found until Belenky et al. (2008), the application of 
folded normal PDF was likely to be responsible for this underprediction. 

2.11. Influence of variation of stability of waves 

Attempts have been made to include the effect of stability variation 
in waves into the piecewise linear model. Belenky (1997) applied an 
empirical method by Nechaev (1989) to account for variation on GZ 
curve; English description of this empirical method is available from 
(Belenky and Sevastianov, 2007). The method provides an amount of 
variation in the GZ curve at a given angle when a midship section is 
located near the crest or the trough of a regular wave. A wave pass was 
modeled with a random phase, while appropriate distributions were 
intended to be used for the wave heights and lengths. Different distri-
butions for the external excitation and stability variation were used. 

The main disadvantage of this idea is that the dynamics of roll mo-
tion with variable stiffness is not included in the model. This feature is 
important, as the variation of stiffness occurs at the same time scale as 
the motions, see e.g., Spyrou (2009). Another important missing feature 

Fig. 6. Amplitudes of particular solutions in frequency-domain (Belenky 
et al., 2008). 
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is the influence of surging, which may “modulate” the stability varia-
tions (Umeda et al., 1990; Umeda and Yamakoshi, 1994). 

The most obvious answer to this challenge is to model the variation 
of stability with the piecewise linear term, making it two-dimensional, 
as illustrated in Fig. 7. The maximum GZ point and the angle of van-
ishing stability, which define the piecewise linear term, become sto-
chastic processes. Proper dynamics of roll motions can be modeled with 
this approach, as shown in Belenky (2000a). However, the solution 
becomes numerical and loses all of the advantages of the closed-form 
expressions (30) and (36). 

The closed-form solution still can be derived if the decreasing part of 
the stiffness remains parallel to itself, as shown in Fig. 8 (Belenky et al., 
2011). The influence of the stability variation is included in a particular 
solution in range 1, so the simplified solution (31) is no longer appli-
cable. The non-rare problem is formulated for upcrossing of the process 
of the difference between the roll angle and ϕm0(t). The rare problem 
leads to distribution (30). The stability variation in waves is reflected in 
the parameters of the distribution but does not affect its exponential tail. 

Belenky et al. (2011) describe a comparison between the closed-form 
piecewise linear expression for the rate of capsizing against an estimate 
from time-domain numerical integration of the differential equation 
with variable piecewise linear restoring. While the comparison was 
limited, the analytical and numerical results were shown to agree, in-
sofar as the former was included in the confidence interval of the latter. 
This can be considered as an indirect confirmation that the incorrect 
distribution of roll rate at upcrossing may be the reason for in-
consistencies reported by Paroka and Umeda (2006). 

To model the stability variation in waves, Belenky and Weems 
(2008a) developed a method for the calculation of the instantaneous GZ 
curve within a potential-flow time-domain simulation. The idea is to 
“freeze” the free surface, incline a ship to an angle from its instantaneous 
position and balance it in pitch and heave. The residual roll moment 
yields a value for the instantaneous GZ curve at the angle the ship was 
inclined to. The method was implemented in the potential-flow sea-
keeping code LAMP (Large-Amplitude Motion Program), see e.g., (Shin 
et al., 2003) and was used for a statistical analysis of the elements of the 
instantaneous GZ curve: transverse metacentric height (GM), angle of 
vanishing stability, maximum GZ and its corresponding angle. Modeling 
distributions of these elements encountered significant difficulties and 
does not seem to be practical. 

LAMP simulations also revealed a complex relationship between roll 
angles and rates in stern quartering seas when stability variations are 
significant. As a stationary stochastic process and its temporal deriva-
tive, roll angles and rates are not correlated. However, the absence of 
correlation infers independence only for Gaussian processes. Belenky 
and Weems (2019) reported that roll angles and rates in stern quartering 
seas are dependent, while uncorrelated. The dependence can be 
revealed through higher-order moments. This dependence may have 
significant influence on both the rare and non-rare problems. 

2.12. Role of analytical solutions 

An obvious practical advantage of a closed-form solution is its po-
tential for stability criterion. Close-form solutions are easy to implement 
even if they use a non-elementary function. Even semi-analytical solu-
tion, containing numerical integration or requiring numerical solution 
of algebraic equation, are attractive as criteria as the results of these 
numerical calculations are easily verifiable in most cases. That is prob-
ably a reason why Paroka and Umeda (2006) considered practical ways 
to present the GZ curve with a piecewise linear term. If sufficiently 
developed and validated, a piecewise linear solution for capsizing 
probability could represent a probabilistic alternative to the weather 
criterion as well as a linearization method by Bulian and Francescutto 
(2004). 

While the method by Bulian and Francescutto (2004) was included 
into the IMO Interim Guidelines of the Second Generation Intact Sta-
bility Criteria MSC.1/Circ. 1627 (IMO, 2020), it is not a probabilistic 
alternative to the weather criterion. The reason is that a probabilistic 
criterion is not consistent with the weather criterion, see e.g., Peters and 
Belenky (2023). As a result, the weather criterion cannot naturally 
“evolve” into a probabilistic criterion. 

The limited practical applicability of the piecewise linear model 
justifies the redirection of research regarding the estimation of capsizing 
probabilities towards numerical approaches. Nonetheless, several 
important results were achieved in the course of the study of piecewise 
linear dynamical system:  

• Capsizing can be considered as a combination of two problems: non- 
rare and rare. The non-rare problem is the upcrossing of an inter-
mediate level, while the rare problem is determination of the con-
dition of capsizing if the intermediate level has been crossed.  

• The non-rare problem allows use of Poisson flow to model capsizing 
and provides relation between probability and time.  

• The condition of capsizing can be expressed as a critical roll rate at 
the instant of roll upcrossing of an intermediate level.  

• The critical roll rate is a random variable taking different values at 
each upcrossing. The variation of stability in waves may have a 
significant contribution in the variability of the critical roll rate.  

• The difference between an instantaneous and critical roll rate, 
computed at the instant of upcrossing, can be used as a metric of 
likelihood of capsizing.  

• The distribution of the differences between the instantaneous and 
critical roll rates is likely to have an exponential tail. 

3. Numerical approach: split-time method 

3.1. Body-nonlinear formulation 

One significant assumption used for derivation of equation (2) is the 
separation of the hydrostatic and Froude-Krylov forces. This artificial 
technique is needed to formulate the roll motion problem into an ordi-
nary differential equation in which all the terms are explicit functions 
that can be approximated with closed-form expressions. This technique Fig. 7. Time-dependent piecewise linear term describing decreasing part of the 

stiffness (Belenky, 2000a). 

Fig. 8. Time-dependent piecewise linear term describing decreasing part of the 
stiffness, allowing a closed-form solution (Belenky et al., 2011). 
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allows the roll motion problem to be brought into the domain of the 
theory of oscillators and helps to find the most important qualitative 
relationships between external forces and the roll response. 

With the advance of seakeeping simulation codes and computational 
resources, one degree-of-freedom (1-DOF) roll models like (2) have 
transitioned from being an engineering tools towards a reduced-order 
model (ROM) used to guide the development of multiple-DOF numeri-
cal methods that are free of most of the assumptions and limitations, 
imposed to derive the 1-DOF models. One of the most important ad-
vantages of the multiple-DOF numerical methods is the incorporation of 
a body-nonlinear formulation, which manifests itself as an inseparability 
of the hydrostatic restoring and Froude-Krylov forces. 

A core implementation of the body-nonlinear problem is the calcu-
lation of hydrostatic and undisturbed wave pressures over the instan-
taneous submerged part of the hull. These pressures are integrated over 
the submerged portion of hull surface and yield a combined hydrostatic 
and Froude Krylov force. In LAMP and many other time-domain sea-
keeping codes, these pressures are integrated over a 3-D panel model of 
the hull surface (Shin et al., 2003). 

The hydrodynamic interaction between the ship and the wave also 
includes diffraction and radiation forces. These forces are also important 
for quantitatively correct numerical results, although they are usually 
smaller than the hydrostatic and Froude-Krylov forces. In potential-flow 
seakeeping simulation codes, these forces are typically computed via a 
potential-flow strip theory or panel method. LAMP has both body-linear 
(LAMP-2 and LAMP-3) and body-nonlinear (LAMP-4) panel methods 
available for diffraction and radiation forces (Shin et al., 2003). While 
the body-nonlinear formulation is essential for hydrostatic and 
Froude-Krylov forces, as they determine equilibria and topology of the 
phase space, the body-linear solutions for diffraction and radiation 
forces are acceptable for an engineering-level numerical modeling of 
capsizing in waves. 

Even with the body-linear solution of the radiation and diffraction 
forces, the computational cost of simulations may be too expensive for a 
Monte-Carlo assessment of rare seakeeping phenomena such as 
capsizing. For an irregular seaway represented with a large number of 
wave components, just the integration of the body-nonlinear hydrostatic 
and Froude-Krylov pressure can be significant. To provide a faster 
simulation, an alternate calculation of the body-nonlinear hydrostatic 
and Froude-Krylov forces has been implemented, which is based on the 
instantaneous submerged volume, using Gauss’ theorem to establish a 
relationship between the surface and volume integrals. The idea has 
been implemented into ROM simulation code “SimpleCode” (Weems 
and Wundrow, 2013; Weems and Belenky, 2023). Coupled with a 
coefficient-based approximation of diffraction and radiation forces, e.g. 
(Kim et al., 2023), this volume-based approach provides a computa-
tional speed close to the numerical solution of ordinary differential 
equations, while retaining the majority of the advantages of the 
body-nonlinear formulation. 

The body-nonlinear formulation for hydrostatic and Froude-Krylov 
forces imposes a lower bound on the number of degrees of freedom 
for which a problem can be solved. As the pressure integration or vol-
ume calculation is based on the ship’s motion relative to the wave sur-
face, at least three degrees of freedom must be included: heave, roll and 
pitch. So considered, the body-nonlinear formulation for hydrostatic and 
Froude-Krylov forces takes care of stability variation in waves in a 
natural way. 

3.2. Split-time method: formulation 

The split-time method was originally developed for the estimation of 
a capsizing rate with time-domain simulation tools. It is based on the 
principles formulated by the study of the piecewise linear dynamical 
system, which was described in Section 2. If the principles formulated 
for a single degree-of-freedom dynamical system with piecewise linear 
restoring and described subsection 2.12 can be maintained, the 

approach can be extended to a dynamical system with 3 degrees of 
freedom. Consider a 3-DOF dynamical system describing the heave, roll 
and pitch motion of a ship in irregular waves travelling with some for-
ward speed: 

MI
˙X→= F→HSFK

(
S→, ζW

)
+ F→DR

(
X→,

˙X→,ζW

)
+ F→V

(
X→
)
+ F→G

(
S→
)

(40)  

where MI is a matrix of inertia, F→HSFK is the vector valued-function of 
hydrostatic and Froude-Krylov forces, F→DR is the diffraction and radia-
tion forces, ζW stands for the wave field, F→V is an approximation for 
viscous effect (including lifting forces from appendages), F→G is the 
gravity force, X→ is a vector of state variables and S→ is a vector of motion 
displacements. The two latter vectors are defined as: 

X→= S→∪
˙S→ S→= (ζ,ϕ, θ)T

(41)  

where ζ,ϕ, θ are heave displacement, roll and pitch angles respectively, 
while superscript T stands for transposition. The heave displacement is 
defined in an Earth-fixed coordinate system. Roll and pitch are Euler 
angles following their traditional definition for ship and aircraft motion 
problems. 

For the non-rare problem, LAMP, SimpleCode or an analogous sea-
keeping tool is applied to the dynamical system (40) with irregular wave 
forcing in order to produce a set of NR ship motion records {X→i}j; i= 1,..,
Nj; j= 1, ..,NR; each record contains Nj data points and represents the 
response to an independent realization of a stationary, stochastic model 
of ocean waves. Capsizing may or may not be present in this dataset. As 
capsizing is rare, the presence of capsizing would be rather exceptional. 
However, the absence or presence of capsizing should not be a problem 
for the application of the split-time method. 

A special study was conducted to see the difference between rare 
solution with 3-DOF and 1-DOF (while heave and pitch were forced from 
unperturbed solution), but no qualitative difference in the results was 
observed. 

3.3. Split-time method: critical roll rate 

Based on the motion histories from a set of “non-rare” simulations, an 
intermediate level of roll ϕm0 is selected that provides approximately 
7–10 upcrossing over each 30 min of simulation time or 20–25 roll pe-
riods per a single crossing. This is an ad hoc number, i.e., based on 
experience. A study was conducted to see the influence the intermediate 
level, but no significant difference in the results was observed. For each 
upcrossing instant k, a series of short perturbation simulations are 
computed in order find the critical roll rate. The initial conditions for 
these short simulations are taken as: 

X→0 = (ζUk,ϕm0, θUk)
T
∪ (ζ̇Uk, ϕ̇Uk + Δϕ̇, θ̇Uk)

T (42) 

The index U indicates that a value was observed at the instant of 
upcrossing. ϕ̇Uk is the roll rate observed the instant of kth upcrossing of 
the intermediate level ϕm0. Δϕ̇ is a perturbation of the roll rate at 
upcrossing. In order to make sure all the events during the transient are 
included in consideration, the duration of these short simulations needs 
to exceed the decorrelation time Td estimated for the dataset. It is 
assumed that self-dependence does not extend beyond Td. The roll rate 
perturbation Δϕ̇ is systematically increased until capsizing has been 
observed, as illustrated in Fig. 9. 

If the capsized equilibrium exists, capsizing is guaranteed for a suf-
ficiently large value of the perturbed roll rate, as the invariant manifold 
around the capsized equilibrium (boundary of safe basin) does exist, see 
e.g., (Rainey et al., 1990). A value of the roll rate for a point at the 
invariant manifold also exists. Finding this point may not be always 
trivial as the boundary of the safe basin may be fractal. This creates 
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difficulties with the application of iterative algorithms, as they may not 
converge. As a result, perturbation has to be systematically increased 
until the capsizing is observed. The search for the perturbation of in-
terest can contribute to the computational cost of the split-time method 
but is minimal relative to a Monte-Carlo evaluation. 

Once capsizing has been observed, the simulation is repeated with 
slightly smaller perturbation Δϕ̇ until capsizing is no longer observed, 
leading to the “critical time history” in Fig. 9. The value of perturbation 
corresponding to this critical time history is the critical perturbation Δ 
ϕ̇cr with: 

ϕ̇cr = ϕ̇Uk + Δϕ̇cr (43) 

The critical time history converges to the original (unperturbed) 
solution after about 60 s, which is close to a typical decorrelation time 
for roll motions. The convergence time Tcnv is determined by the dif-
ference between the perturbed and original solution computed for a 
specified number of consecutive roll cycles. 

If a capsizing is present within this short simulation duration, a set of 
perturbed simulations are still run to determine the convergence time. If 
the originally observed capsizing occurs after this convergence time, it 
can be ignored, as it occurs beyond the influence of perturbations 
(Fig. 10a). The search for a critical roll rate continues, with the capsizing 
required to be within the convergence time. If the capsizing occurs 
within the convergence time, the value of the perturbed roll rate is set to 
satisfy ϕ̇Uk + Δϕ̇cr = 0. If capsizing disappears, the search for the critical 
roll rate continues as described above. If capsizing remains for an initial 
roll rate of zero, the critical roll rate is set to zero as well: ϕ̇cr = 0. This 
case is indicated in Fig. 10b. 

The results of calculation of critical roll rate for a single record are 
illustrated in Fig. 11. This record has been taken from Weems et al. 
(2023), and it is for the ONR Topsides Series tumblehome configuration 
(Bishop et al., 2005), sailing in stern-quartering waves (heading 45◦) 
with a constant forward speed of 6 knots in irregular waves with sig-
nificant wave height of 9 m and a modal period of 14 s. The seaway is 
modeled using a Bretschneider (1959) spectrum and corresponds to a 
high sea state 7 or low sea state 8. The value of GM was 2.2 m. 3-DOF 
(Heave-Roll-Pitch) simulations were carried out with volume-based 
tool SimpleCode (Weems and Belenky, 2023) with nominal co-
efficients for added mass and damping and without diffraction. 

The record in Fig. 11a contains an episode of large rolling at around 
1000 s, a close-up of which is shown in Fig. 11b. The intermediate roll 

Fig. 9. Perturbed motion simulations (Belenky et al., 2018).  

Fig. 10. Processing observed capsizing event (a) capsizing occurs after convergence time; (b) capsizing occurred during the convergence time.  

Fig. 11. Visualization of the results of calculation of critical roll rate for a single record: (a) roll time history (b) close-up of roll time history (c) critical roll rate and 
associated values, (d) close-up of critical roll rate and associated values. 
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level was set to 12◦ leading to a total of seven upcrossings, identified by 
circles in Fig. 11a and b. Fig. 11c shows the values of roll rate ϕ̇1 at the 
instants of these upcrossings (also shown with circles), while boxes 
identify the values of the critical roll rates ϕ̇cr. The difference between 
the roll rate at upcrossing and the critical roll rate ϕ̇d are indicated with 
crosses. Fig. 11d contains a close-up of the large roll angle episode 
around 1000 s. 

Note that the upcrossing prior to the large roll angle yields the 
smallest value of the critical roll rate, ϕ̇cr = 0.29 rad/s, while the rest of 
the values of the critical roll rate are around 0.5 rad/s. The roll rate at 
this upcrossing is ϕ̇1 = 0.165 rad/s, while the other observed values are 
around 0.03–0.08 rad/s. The rate difference ϕ̇d = -0.125 rad/s is the 
largest (least negative) among the observed values of ϕ̇d, which are 
otherwise in the range of − 0.5 to − 0.4 rad/s. Since a zero-value of ϕ̇d is 
associated with capsizing, the closest value of ϕ̇d to zero would be ex-
pected to produce the largest roll angle, so this seems reasonable. Small 
value of the critical roll rate is consistent with pure loss of stability. 

Fig. 12 provides some insight into the pure loss of stability associated 
with the large roll event, which was evident in the smaller value of 
critical roll rate for the associated upcrossing. Fig. 12a shows three 
instantaneous GZ curves, while Fig. 12b identifies the time instances 
when these GZ curves were computed. The red GZ curve computed early 
in the roll event at t = 997.5 s has no positive stability, while the other 
two GZ curves show some recovery of stability as the wave passes. 

These stability-in-waves evolutions show how the large roll angle of 
40◦ observed at t = 1002.5 s is induced by a loss of stability a short time 
earlier. Fig. 12a also shows the calm-water GZ curve. It is interesting to 
note that the calm-water GZ curve does not indicate any reason for intact 
stability concerns: GZ maximum is around 0.75 m, occurring around 46◦

while the range of stability is above 90◦. Nevertheless, a deterioration of 
the stability in waves lead to a 40◦ roll angle. A similar type of analysis 
can be found in more detail by Spyrou et al. (2014). The algorithm for 
evaluating the instantaneous GZ curves in waves is described in Belenky 
and Weems (2008a). 

This example illustrates an important capability of the present 
approach – the critical roll rate contains information on “things that 
have not yet come to pass,” i.e., possible scenarios of capsizing with 
account of future variation of stability in waves. 

The perturbed simulations provide important information about 
potential capsizing. The simulation time is “split” between the main and 
perturbed simulation, which was the inspiration to name the method 
“split-time”. Another name used in the literature is “motion perturbation 
method” (MPM), which reflects the key role that perturbation plays in 
the approach. 

3.4. Hydrodynamic memory 

A significant challenge of using motion perturbation methods with 
numerical seakeeping simulation tools is the consideration of the hy-
drodynamic memory. Hydrodynamic memory is an effect in which the 
flow field and forces of the wave-body hydrodynamic interaction 
problem are dependent on the short- to medium-term history of the 
solution and cannot be completely quantified as functions of the 
instantaneous state variables and their derivatives, as can be done for a 
model based on ordinary differential equations (ODEs). In potential flow 
seakeeping models, this memory is associated with the unsteady 
disturbance wave field generated by the ship’s unsteady motion (radi-
ation waves), interaction with the incident wave (diffraction waves) and 
forward speed (Kelvin waves). In viscous flow solvers (e.g. URANS and 
LES), they will also be associated with the generation and evolution of 
vortical flow structures and the like. 

Motion perturbation analysis requires simulations starting at 
crossing points of the non-rare simulations with variations to selected 
state variables, which will be the roll velocity for the present capsizing 
problem. To save the complete state of the calculation is relatively 
straight forward, including the unsteady free surface disturbance, and 
then the perturbation simulation from this point is restarted. However, 
large variations in the roll rate generally result in a significant transient 
behavior due to the impulsive change in velocity, which often lead to 
instability in the free surface potential flow solution. 

The simplest solution to the problem is to use an ODE-like approxi-
mation for the disturbance wave forces in the perturbation simulations 
rather than attempting to solve the free-surface potential flow problem. 
In its most basic form, this consists of the prescribed added mass and 
damping coefficients. LAMP has an option to turn off the disturbance 
wave forces and use added mass and damping coefficients instead (the 
option is usually referred as LAMP-0 model). This option was used in the 
implementation and initial testing of the MPM described above. Vali-
dation cases described in Weems et al. (2023) utilized the similar 
approach, but implemented in the volume-based tool (Weems and 
Belenky, 2023). 

As these provide an explicit calculation of the radiation and 
diffraction effects in terms of the state variables, they have no problem 
with the perturbation to the roll rate or other state variables and have 
the significant advantage that they result in a relatively fast calculation 
of the perturbation simulations. The approach is, however, approximate 
and the effect of the approximation will need to be quantified. 

The incorporation of the conventional time-domain free surface po-
tential flow solution in the perturbation simulations corresponds to 
introducing the perturbation of the motion while maintaining the sta-
bility and correctness of the flow solution. To avoid instability and 
minimize transient effects, the perturbation begins 10–20 s before the 
crossing event, with prescribed motions during the period up to the 

Fig. 12. Pure loss of stability (a) GZ curves in waves (b) Time history of roll: color circles correspond to the time instances where respective GZ curves 
were computed. 
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event. The prescribed motions are based on the motions from the non- 
rare simulation with the velocity perturbation feathered in over this 
time. An advantage of such an approach is that it can be implemented 
with regular check-pointing of the non-rare solution without having to 
identify and save crossing points during the non-rare simulations. A 
disadvantage of such an approach is that it is relatively computationally 
expensive compared to only identifying upcrossings. 

An example of these calculations is shown in Fig. 13, where LAMP-2 
was used for perturbed simulation, where diffraction and radiation were 
computed with a Rankine-source scheme over the mean wetted surface. 
The unperturbed solution is shown in dashed black line, the perturbed 
solution being just short of capsizing is depicted as solid blue line, while 
capsizing time history is given in red. The configuration was ONR 
Topside Series tumblehome hull, for which the 3D model and charac-
teristics are shown in Fig. 14. The heading was 45 deg. (stern quartering 
seas) with forward speed of 6 knots in a sea state with significant wave 
height of 9 m and modal period of 14 s. The value of GM was 2 m. 

Another approach toward incorporating memory into the perturba-
tion simulations would be to use an impulse response function (IRF) 
solution of the disturbance potential. The IRF-based formulation of the 
wave-body interaction problem uses body-linear solutions of the 
impulsive radiation and diffraction problems that are convoluted with 
the wave and motion time history to provide a very rapid approximate 
body-nonlinear solution. The method has long been applied for constant 
course and speed seakeeping simulations (Weems et al., 2000), and was 
adapted to the perturbation simulations in which the ship can be 
assumed to have constant course and speed for the duration of the 
perturbation. The computational stability issues were considerably 
mitigated, while numerical results were very similar to in Fig. 13. 

3.5. Calculation of critical roll rate for 6-DOF 

The split-time method can also be applied to 6-DOF simulations. An 
example, computed with LAMP-0, is shown in Fig. 15. The unperturbed 
solution is shown in dashed black line, the perturbed solution being just 
short of capsizing is depicted as solid blue line, while capsizing time 
history is given in red. The ship is again the ONR Topsides tumblehome 
hull and the wave conditions are the same as the shown in Fig. 14. The 
hull sway force and yaw moment were approximated with hull lifting 
coefficients based on experimental data of a similar hull. Rudder course 
control was implemented with a proportional gain of 2 and differential 
gain 0.5. 

The main difference of 6-DOF vs. 3-DOF calculations is apparent in 
Fig. 15 as a lack of convergence. In the absence of capsizing, the per-
turbed solution does not necessarily converge to the unperturbed solu-
tion. The reason can be understood from Fig. 15c and f, showing a 
trajectory in the horizontal plane and a time history of the surge ve-
locity. As the horizontal plane motions (surge, sway and yaw) are 

included, the perturbation moves the ship away from the original path. 
The surging velocity is also different, so the perturbed solution ends up 
in a different place in the wave field, resulting in a phase shift of the 
waves as encountered by the ship. 

The time of convergence was used to determine if the capsizing 
observed in the perturbed solution could be attributed to that pertur-
bation. This is essentially a problem of self-dependence – how long a 
current value of a stochastic process is influenced by its values in the 
past. A decorrelation time can also be used as an approximate metric of 
self-dependence. The decorrelation time is defined as an interval where 
the autocorrelation is no longer significant. The autocorrelation function 
is a normalized autocovariance function. The latter is estimated as: 

R̂k =
∑NR

j=1

Wj

Nj

∑Nj − k

i=1

(
{ϕi}j − Êϕ

)(
{ϕi+k}j − Êϕ

)
;

k = 0, 1,…Nk

(44)  

where {ϕi}j; i = 1, ..,Nj; j = 1, ..,NR is a roll motion dataset consisted of 
NR records, each of which contains Nj points. The “hat” above a symbol 
means that it is “an estimate from the data” rather than a theoretical 
value. Êϕ is mean value of roll angles estimated over the entire dataset: 

Êϕ =
∑NR

j=1

Wj

Nj

∑Nj

i=1
{ϕi}j (45)  

where Wj is a statistical weight of each record defined as: 

Wj = Nj⋅

(
∑NR

j=1
Nj

)− 1

(46)  

where Nk is the number of time increments for which autocorrelation 
function can be reasonably estimated. 

Time lag is an argument of the autocorrelation function. The esti-
mate of the autocorrelation function for larger time lag is less accurate as 
fewer data points are available for larger time lags. This problem is 
partially solved by penalizing the contribution to R̂k from the larger lags 
with (Nj − k)/Nj. In principle, Nk can be set equal to max(Nj), but the 

Fig. 13. Perturbation calculations with LAMP-2, with diffraction and radiation computed during simulations with Rankine-source method (Weems and 
Belenky, 2017). 

Fig. 14. ONR Topside Series tumblehome configuration for LAMP simulations.  
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calculation of decorrelation time usually requires fewer points. The es-
timate (44) is biased, but the bias is small for realistic values of Nj. The 
estimate can be de-biased with Nj/(Nj − 1). Finally, the autocorrelation 
function is computed by the normalization of autocovariance function 
with its first term (which is the variance): 

r̂ k =
R̂k

R̂0
(47) 

Fig. 16 illustrates a scheme for estimating the decorrelation time. The 
significance level needs to be selected, and its value is usually taken as 
0.05 or 0.01. An envelope of the autocorrelation function is computed as 
a line connecting the absolute values of its peaks. The decorrelation time 
is where the envelope of the autocorrelation crosses the significance 
level for the first time. 

This decorrelation time is employed instead of the convergence time. 
In all other regards, the calculation of the critical roll rate for a 6-DOF 
perturbation is identical to that for a 3-DOF case. A study was con-
ducted to see the difference if decorrelation time is applied in the 3-DOF 
case instead of convergence time, but no significant difference in the 
results was observed. 

4. Tail of the distribution of capsizing metric 

4.1. Capsizing metric and its extrapolation 

The algorithm for calculation of the critical roll rate, described in the 
Section 3.2, allows the evaluation of the likelihood of events, not 
observed in the data. The physics associated with the transition to the 
capsized equilibrium, including the effects of large roll angle such as 
water-on-deck and bilge keel emergence, can be included in the 
perturbation simulations. Therefore, these contributing physics from 
large roll are reflected in the critical roll rate. 

To complete the calculation, a distribution of the differences be-
tween the roll rate at upcrossing and the critical roll rate needs to be 
modeled from the values computed for each upcrossing. However, the 
entire distribution is not necessary for estimating the probability of 
capsizing; as capsizing in realistic conditions is rare. It is sufficient to 
model only the tail of the distribution. The numerical approach based on 
the critical roll rate essentially transforms the capsizing probability 
problem into an ordinary extrapolation problem, as illustrated in 
Fig. 17. This extrapolation problem is legitimate as the information on 
the proximity of capsizing is present in the data. 

4.2. Application of extreme value theory 

As was mentioned in Section 1.3 of the Introduction, the mathe-
matical background for the distribution tail fitting is based on the 
extreme value theory, see e.g., (Coles, 2001). The largest value in a 
sample of independent data points asymptotically follows a Generalized 
Extreme Value (GEV) distribution, irrespectively of the distribution of 

Fig. 15. Perturbation calculations with 6-DOF LAMP-0: (a) Roll time history (b) Yaw time history (c) Trajectory (d) Heave time history (e) Pitch time history (f) Time 
history of surge velocity. 

Fig. 16. Calculation of decorrelation time for roll motions.  Fig. 17. The problem of statistical extrapolation.  
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all of the data points. Extreme value theory is used in many applications 
and has recently been included in the framework of the IMO Second 
Generation Intact Stability Criteria, as described in Section 5.3.1 of 
Appendix 4 to the Explanatory Notes to the Interim Guidelines on the 
Second Generation Intact Stability Criteria, MSC.1/Circ. 1652 (IMO, 
2023). 

To illustrate this principle, consider an example from the cited 
Explanatory Notes. In general, the largest value from a sample of n in-
dependent data points is distributed as: 

PDF1(x|n)= PDF(x)(CDF(x))n− 1 (48)  

where PDF(x) and CDF(x) are the probability density and cumulative 
distribution functions of the sampled random variable x respectively. 
This distribution is usually referred as the “underlying distribution” and 
is assumed to be normal for this example. Equation (48) is correct for 
any underlying distribution, as soon as the sample points are indepen-
dent. The Fisher-Tippet-Gnedenko (or the first extreme value) theorem 
states that with the increase of n, the distribution (48) trends towards the 
GEV distribution: 

PDFGEV (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp( − y)⋅exp( − exp( − y) )

for ξ = 0

(1 + ξ⋅y)− (1+1/ξ) exp
(
− (1 + ξ⋅y)− (1/ξ)

)

for ξ ∕= 0 ∩ ξ⋅y > − 1

0 otherwise

where y =
x − μ

σ

(49)  

where ξ is a shape parameter, σ is a scale parameter and μ is a location 
parameter. The convergence of the distribution of the largest value 
among the sample of n-points is shown in Fig. 18 (underlying distribu-
tion is standard normal). 

When the GEV distribution is used to extrapolate outside of the 
observed data, the parameters are estimated from the available sample, 
allowing an evaluation of the probability outside of the observed data, as 
shown in Fig. 17. The data points used for the estimation are essentially 
the largest values in a sample, so only a single point from a sample can be 
used. To increase data utilization, a “block maxima” approach can be 
used – the sample is subdivided into “blocks”, large enough so its 
maxima can be considered independent. Independence of data is one of 
the requirements for using GEV. 

Another way to improve data utilization is fitting a tail of the dis-
tribution, using only the data points above some large-enough threshold. 
The tail is expressed by the conditional GEV over the exceedance of a 
threshold w, the result is known as Generalized Pareto Distribution 
(GPD): 

pdfGPD(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
σ exp

(
−

x − w
σ

)
for ξ = 0

1
σ

(
1 + ξ

x − w
σ

)− (1+1/ξ)
for ξ ∕= 0 and ξ

x − w
σ > − 1

0 otherwise

(50) 

The shape parameter ξ and the scale parameter σ are the same as in 
equation (49). 

Equation (50) represents the essence of the Pickands-Balkema-de 
Haan (or the second extreme value) theorem, stating that a distribu-
tion above the large-enough threshold can be approximated with GPD. 
Note that the GPD threshold w has a completely different meaning than 
that of the roll-angle intermediate level ϕ0 (to avoid confusion, the term 
“threshold” is used in this paper only for distribution tail definition, 
while the term “level” is applied for the boundary between the non-rare 
and rare problems). 

The scale parameter σ must be positive (as the PDF cannot be 
negative), while the shape parameter ξ can be either positive or nega-
tive. For the case ξ = 0, the GPD becomes an exponential distribution for 
the variable x-w with the parameter 1/σ. A negative shape parameter 
imposes a limitation on the variable x: 

w < x < w − σ/ξ ; ξ < 0 (51) 

This limitation formally introduces a right bound for the negative 
values of shape parameter, located at x = w − σ/ξ. The shape parameter 
therefore defines the type of tail: heavy, exponential or light, as shown in 
Fig. 19. 

GPD can also be used for extrapolation as well as GEV. This could be 
seen as being more efficient from the data utilization standpoint; how-
ever, it requires the determination of a threshold that is “large enough”. 
The choice between GEV and GPD for extrapolation is a matter of 
preference. The authors have used GPD for the study of the distribution 
tail of capsizing metric. 

4.3. Metric definition and declustering procedure 

It is convenient to define a formal metric of the likelihood of 
capsizing, computed at the kth upcrossing of a level ϕ0 as: 

hk = cm + ϕ̇Uk − ϕ̇cr; cm = 1 rad/s (52) 

The constant cm is introduced for convenience only. The difference 
ϕ̇Uk − ϕ̇cr is negative, as capsizing is not expected to be observed during 
the simulations. If the difference ϕ̇Uk − ϕ̇cr is used as the metric, 
capsizing is expected when ϕ̇Uk − ϕ̇cr = 0, so the target for extrapolation 
would be zero. The constant cm simply shifts the extrapolation target to 
the right, placing the distribution of the metric into the positive semi- 
axes. The choice for the numerical value for cm is an arbitrary large 
value for roll rate to ensure that the domain of the metric is positive (for 
convenience and expressive graphics). 

The values of a capsizing likelihood metric are computed at each 
upcrossing. Thus, the metric values are not necessarily independent 
random variables as the upcrossing instants can be grouped or clustered 
due to self-dependence of the roll motion process. At the same time, 

Fig. 18. Convergence of the distribution of the largest value in a sample to a 
GEV with an increasing number of samples (MSC.1/Circ. 1652). Fig. 19. Types of tails.  
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extreme value theory is formulated for independent random variables 
only, so any self-dependence has to be removed from the computed set 
of metric values. The procedure of the self-dependence removal can be 
referred to as “declustering”. 

Declustering is illustrated in Fig. 20. First, the clusters are identified 
with the time of influence for an individual crossing. The convergence 
time (Fig. 10) can be used for 3-DOF rare problem formulation. The 
decorrelation time (Fig. 16) is applicable for both 6-DOF and 3-DOF rare 
problem formulations. As can be seen from Fig. 20, the upcrossing data 
are included in a cluster until there is no more data available within the 
influence time. Declustering is completed by selecting the largest value 
of the metric observed within each cluster. 

The necessity for declustering provides guidance on the selection of 
the intermediate level ϕm0. If the level was chosen too low, clusters will 
be long, resulting in low computational efficiency, as many of the metric 
values will not be selected, while each of them carries a certain 
computational cost. If the intermediate level is selected too high, there 
will be fewer crossing and the simulation dataset has to be longer, which 
also carries a certain computational cost. 

4.4. Approximation of tail of distribution of capsizing metric with GPD 

For the approximation of the tail of the distribution of capsizing 
metric with GPD, its shape and scale parameters must be estimated as 
well as a value of the threshold needs to be found. The threshold should 
be “large enough” to claim extreme value properties, i.e. the tail of 
observed distribution behaves similar to GPD. For the “large enough” 
threshold, the shape parameter should no longer depend on the 
threshold value, see e.g., (Coles, 2001). To find the value of this “large 
enough” threshold, a number of candidate thresholds are considered, so 
shape and scale parameters need to be estimated for these thresholds. 

The maximum likelihood estimator (MLE) method is a standard way 
of estimating the parameters for the GPD distribution. The idea of MLE is 
that sample data points have the largest probability under GPD pa-
rameters close to the true parameters, because they were observed. 
Thus, the best estimates for the parameters should maximize a likeli-
hood function defined as a joint probability of the sample points. To 
minimize the negative logarithm of the likelihood function is more 
convenient: 

L(ξ, σ) = N⋅ln(σ) +
(

1 +
1
ξ

)
∑N

i=1

(
1 + ξ

zi

σ

)
(53)  

where N is the number of data points above a threshold w and zi = hi − w 
are the sample data points above a candidate threshold w. 

The two-dimensional log-likelihood (53) can be rewritten as a 
function of only one argument (Grimshaw, 1991): 

L(ks) = N⋅ln

(

N⋅

(
∑N

i=1

(

1 +
1

kszi

))− 1

− 1

)

− N⋅ln(ks)

+N⋅ln

(

N −
∑N

i=1

(

1 +
1

kszi

))− 1
∑N

i=1
(1 + kszi)

(54)  

where ks = ξ/σ. 
In principle, it is possible to differentiate the function (54) and solve 

an algebraic equation for the zero-value of ks. The function (54), how-
ever, has a relatively shallow minimum at the candidate thresholds of 
interest, as illustrated in Fig. 21. The authors have had better success 
using minimization routines, available from a standard numerical li-
brary. Minimization algorithms usually requires an initial value that can 
be obtained through the estimates of the mean Êz and variance V̂z of the 
data above the candidate threshold: 

ξ̂0 = 0.5
(

1 −
Ê

2
z

V̂ z

)

, σ̂0 = 0.5Êz

(

1 +
Ê

2
z

V̂ z

)

(55) 

Once ̂ks = argmin(L(ks)) is found, the estimates of the shape and scale 
parameters are: 

ξ̂ = N⋅

(
∑N

i=1

(

1 +
1

k̂szi

))− 1

− 1, σ̂ =
k̂s

ξ̂
(56) 

The distribution of the estimates of the shape and scale parameters 
can be taken as bivariate normal (Smith, 1987). To define it, mean 
values, variances, and correlation coefficient must be found. The MLE 
method is known to lead to an unbiased estimate, so the mean values of 
the parameters are simply equal to the estimates themselves. The 
minimization of (54), and the calculation with (56) produce estimates 
for the mean values of the shape and scale parameters. Their variances 
and the correlation can be estimated using the delta-method, i.e., 
expanding (54) with Taylor series and then interpreting that expansion 
as a deterministic function of random variables, see Boos and Stefanski 
(2013). As a result, the covariance matrix is expressed through the 
second-order derivatives of the log-likelihood function (53): 

Ĉov(ξ, σ)=

⎛

⎜
⎜
⎜
⎜
⎝

∂2L/∂ξ2 ∂2L/∂ξ∂σ

∂2L/∂ξ∂σ ∂2L/∂σ2

⎞

⎟
⎟
⎟
⎟
⎠

− 1

=

(
V̂ ξ r̂ξσ

(
V̂ ξ V̂ σ

)0.5

r̂ξσ
(

V̂ ξ V̂ σ
)0.5 V̂ σ

)

(57)  

where 

∂2L
∂ξ2 =

2
ξ3

∑N

i=1
ln
(

1 + ξ
zi

σ

)
−

2
ξ2

∑N

i=1

zi

σ + ξzi
−

(

1 +
1
ξ

)
∑N

i=1

(
zi

σ + ξzi

)2

∂2L
∂σ2 =

N
ξσ2 −

(

1 +
1
ξ

)
∑N

i=1

1
(σ + ξzi)

2

∂2L
∂ξ∂σ =

N
ξ2σ

−
1
ξ2

∑N

i=1

1
σ + ξzi

−

(

1 +
1
ξ

)
∑N

i=1

zi

(σ + ξzi)
2

(58) 

Equations (57) and (58) allow the construction of a confidence in-
terval for the estimates of the parameters: 

Fig. 20. Declustering of the metric of capsizing likelihood.  Fig. 21. Negative log likelihood for the threshold value w = 0.546 rad/s.  
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ξ̂up,low = ξ̂ ± QN V̂
0.5
ξ , σ̂up,low = σ̂ ± QN V̂

0.5
σ (59)  

where QN is standard normal quantile. For a confidence probability, 
Pβ= 0.95 and QN = 1.96. 

As mentioned above, to find what value of the threshold support the 
claim of extreme-value properties, GPD-like behavior must be observed 
in the data. The shape parameter not depending on the threshold is one 
of the indicators of this GPD-like behavior. As the estimate of the shape 
parameter is a random number, checking if it is constant should be 
interpreted in a statistical sense, i.e. plotting a line though its confidence 
interval, see Fig. 22. 

The scale parameter is not required to be constant and cannot be 
used directly. Instead, the modified scale parameter is defined as: 

σm = σ − ξw (60) 

Similar to the shape and scale parameter, the mean value of its es-
timate is equal to itself, while the variance can be computed from the 
covariance Cov(ξ,σ): 

V̂ σm = W→T Ĉov(ξ, σ)W→, W→=

(
− w
1

)

(61) 

The modified scale parameter is expected to be a constant when the 
GPD is applicable, so the same rules for the choice of the threshold can 
be used, as illustrated in Fig. 23. The selection of the threshold is the 
same as in Fig. 22, but this is a coincidence and may not be the case for 
other data sets. 

The idea to search the threshold that gives the “best” fit in terms of 
accuracy was implemented in the ad hoc method described by Reiss and 
Thomas (2007), where it was referred to as a possibility for an automatic 
procedure. A similar (but not exactly the same) approach has been 
employed here, making use of the already estimated shape parameters. 
The threshold is searched by minimizing the following function: 

f (wk) =
1

Ntr − k
∑Ntr − 1

i=k
(Ntr − i)b

×
⃒
⃒ξ̂i − md

(
ξ̂k,…, ξ̂Ntr

)⃒
⃒

(62)  

where Ntr is a number of candidate thresholds considered, md() is a 
median function, and ̂ξk,…, ξ̂Ntr are estimates of shape parameter above 
the k-th threshold. A value of 0.5 was taken for b. A plot of (62) is shown 
in Fig. 24. The selected threshold is noticeably larger, compared to the 
selections from the shape parameter plot in Fig. 22 and the modified 
scale parameter plot in Fig. 23. Interestingly, the function (62) experi-
ences a local minimum where the previous selections for the threshold 
was made. 

Following recommendations in Reiss and Thomas (2007), the 
squared difference from the mean was considered instead of the absolute 
value of the difference from the median: 

f (wk) =
1

Ntr − k
∑Ntr − 1

i=k
(Ntr − i)b

×
(

ξ̂i − E
(

ξ̂k,…, ξ̂Ntr

) )2

(63)  

where E is an averaging operator. Function (63) is plotted in Fig. 25 and 
its interpretation seems to be similar to Fig. 24. The selected threshold is 
also similar. 

Mager (2015) developed methods for automatic threshold selection 
using the minimum of prediction error as a criterion. This approach was 
successfully applied for exponential distribution (see subsection 4.7). 
However, the application of the prediction error criterion for GPD re-
mains for future research. 

The highest threshold among those identified by the four applied 
methods is the final selection. The justification of selecting the highest 

Fig. 22. Shape parameter plot.  

Fig. 23. Modified scale parameter plot.  

Fig. 24. Appearance and minima of equation (62).  

Fig. 25. Appearance and minima of equation (63).  
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threshold is that a threshold is identified based on the applicability of 
the extreme-values properties, so these properties also can be claimed 
for all of the thresholds above the selected. The highest threshold value 
is supported by all four considered methods. 

4.5. GPD-extrapolated estimate and its uncertainty quantification 

Once the GPD parameters (including the threshold) have been 
evaluated, the estimate of the conditional probability of capsizing 
(under the condition that the roll angle crosses the intermediate level 
and the value of metric exceeds the chosen threshold w) can be 
expressed as: 

P̂(ϕ̇1 > ϕ̇cr|h > w) = P̂(h > cm|h > w)

=

⎧
⎪⎪⎨

⎪⎪⎩

(
1 + ξ̂

cm − w
σ̂

)− 1/ξ̂
for ξ̂ > −

σ̂
cm − w

0 for ξ̂ ≤ −
σ̂

cm − w

(64)  

where cm = 1 rad/s, see equation (52). 
Formula (64) describes an estimate, which is a random variable, so 

its uncertainty must be addressed. It can be considered a deterministic 
function g of random arguments, which are the estimates of the shape 
and scale parameters: 

P̂(h > cm|h > w) = g(ξ̂, σ̂ ) (65) 

The appearance of the function g(ξ̂, σ̂ ) is shown in Fig. 26 (Belenky 
et al., 2014). 

The function g(ξ̂, σ̂ ) has the following property, which will be used 
below. Take cm − w= 1 for notational simplicity. Consider any line 
segment s = {g(ξ̂, σ̂ ):ξ̂ = a+bσ̂,σ̂ ∈ [σ1, σ2]} falling inside the range of 
possible parameter values {(ξ̂, σ̂ ):σ̂> 0,ξ̂> − σ̂} where g(ξ̂, σ̂ )> 0. One 
can then show that the function g(ξ̂, σ̂ ) is monotonic over the segment s, 
that is, g(ξ̂ = a+bσ̂, σ̂ ) is monotonic over σ̂ ∈ [σ1, σ2]. As will be used 
below, this implies that g(ξ̂, σ̂ ) on the segment s takes its smallest and 
largest values at the endpoints of s. 

To show monotonicity, for the sake of brevity, consider one special 
but quite broad case, when the segment s falls into the region ̂ξ> 0 only. 
(The general case can be worked out similarly.) Note that in this case, 
one can write 

g(ξ̂ = a+ bσ̂, σ̂ )=

(

1 +
a + bσ̂

σ̂

)− 1/(a+bσ̂)

= (f1(σ̂))− f2(σ̂) (66)  

where f1(σ̂)= 1+b + a /σ̂> 1 and f2(σ̂)= 1 /(a + bσ̂)> 0. 
The goal is to show that the resulting function in (66) is monotonic as 

σ̂↑ (i.e., σ̂ increases). This is demonstrated by considering the following 
subcases as σ̂↑: 

a < 0,  b < 0:  f1↑, f2↑⇒(f1)
f2 ↑⇒(f1)

− f2 ↓
a < 0,  b > 0 : f1↑, f2↓⇒(f1)

− f2 ↑
a > 0,  b < 0 : f1↓ , f2↓⇒(f1)

f2 ↓⇒(f1)
− f2 ↑

a > 0, b > 0:  f1↓ , f2↑⇒(f1)
− f2 ↓

(67) 

In all the subcases, the function (66) is indeed monotonic as stated. 
The simplest way to construct a confidence interval is the boundary 

method, i.e., taking the upper and lower boundaries of the estimates and 
substitute them into (65). The method is known to be working for a 
monotonic function of a single argument, see e.g., section 4.4 of (Bickel 
and Doksum, 2001). However, the function (65) has two arguments and 
these arguments are correlated, see equation (57). 

Estimates of the shape and scale parameters were assumed as 
bivariate normal (see subsection 4.4). To account for the correlation 
between the estimates of shape and scale parameter, Glotzer et al. 
(2017) construct their confidence interval in transformed coordinates. 
The correlation of bivariate normal variables can be eliminated by 
defining a rotation of coordinate system: 

Ĉov(ξ, σ) =

⎛

⎝
V̂ ξ r̂ξσ

(
V̂ ξ V̂ σ

)0.5

r̂ξσ
(

V̂ ξ V̂ σ
)0.5 V̂ σ

⎞

⎠

↓
(

V̂ ξ0 0

0 V̂ σ0

)

= diag
(

V̂ ξ0, V̂ σ0
)

(68)  

where V̂ξ0, V̂σ0 are the eigenvalues of Ĉov(ξ, σ). The boundaries of the 
confidence interval of the estimates in the transformed coordinates are: 

ξ̂
∗

0up,low = Êξ ± QN V̂
0.5
ξ0 , σ̂∗

0up,low = Êσ ± QN V̂
0.5
σ0 (69) 

A star-superscript means that the boundaries ̂ξ
∗

0low,up and σ̂∗

0up,low need 
to be computed for the confidence probability 

̅̅̅̅̅
Pβ

√
, when the confidence 

interval for P̂ is constructed with confidence probability Pβ. 
In order to use the boundaries (69) in the function (65), the co-

ordinates need to be transformed back to the original frame of references 
with correlation. A point in the plane (ξ̂, σ̂) is rotated and shifted: 
(

ξ̂
σ̂

)

= T⋅
(

ξ̂ − Êξ

σ̂ − Êσ

)

+

(
Êξ

Êσ

)

(70) 

The transformation (70) is applied to four combinations of the 
boundaries (69): 
(

ξ̂
∗

0up, σ̂∗

0up

)
,
(

ξ̂
∗

0low, σ̂∗

0up

)
,

(
ξ̂
∗

0up, σ̂∗

0low

)
,
(

ξ̂
∗

0low, σ̂∗

0low

) (71) 

The result are the points: 
(

ξ̂up, σ̂up
)
,
(

ξ̂low, σ̂up
)
,
(

ξ̂up, σ̂ low
)
,(ξ̂low, σ̂ low) (72) 

Boundaries of the confidence interval of the extrapolated probability 
estimate are computed as min/max of function g over four points (72): 

p̂low = P̂low(h> cm|h>w)=min
(
g
(

ξ̂up,low, σ̂up,low
))

(73)  

p̂up = P̂up(h> cm|h>w)=max
(
g
(

ξ̂up,low, σ̂up,low
))

(74) 

The following observations of (73) and (74) are in place. First, note 

Fig. 26. Estimate of the conditional probability of capsize as a deterministic 
function of random arguments – estimates of GPD parameters (Belenky 
et al., 2014) 
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that while the points (71) form a rectangle, the rotated points (72) form 
a rotated rectangle, which is denoted by R. In fact, in connection to 
equation (73), one can write: 

min
(
g
(

ξ̂up,low, σ̂up,low
) )

= min(g(ξ̂, σ̂) : (ξ̂, σ̂) ∈ R )

(75)   

and similarly to max in connection to (73): 

max
(
g
(

ξ̂up,low, σ̂up,low
) )

= max(g(ξ̂, σ̂) : (ξ̂, σ̂) ∈ R )

(76) 

This is a consequence of the fact proved around equation (66) that 
the function g(ξ̂, σ̂ ) is monotonic on any segment of parameter values 
(e.g., the segments can be edges of R, implying min/max values at the 
boundary points (72); similarly for segments crossing the interior of R). 
Second, the confidence interval (p̂low, p̂up) based on the boundaries (73) 
and (74) will generally be conservative. By the construction above, R 
provides a confidence region for the true parameters (ξ0, σ0) with con-
fidence probability Pβ. However, (65) is not a one-to-one function. There 
will be points (ξ̂, σ̂) ∕∈ R such that g(ξ̂, σ̂) will fall in (p̂low, p̂up), thus 
associated with a larger set than R resulting in probability values in 
(p̂low, p̂up) and having a larger probability than Pβ. More formally, letting 
p0 denote the true probability: 

P
(
p0 ∈

(
p̂low, p̂up

) )

= P
(
g(ξ0,σ0) ∈

(
p̂low, p̂up

) )
> P((ξ0,σ0) ∈ R )

= Pβ

(77) 

An alternative is to find a distribution for P̂ using the already defined 
bivariate normal distribution PDFN(ξ, σ) with the vector of mean values 
(ξ̂, σ̂ ) and covariance matrix (57), i.e., to solve a composition problem. 
The mean value of P̂ is expressed as: 

E(P̂ )=

∫∫ ∞

− ∞
g(ξ, σ)PDFN(ξ, σ)dξdσ (78) 

and: 

E(P̂ )∕= g(ξ̂, σ̂ ) and E(P̂ )∕= 0 (79) 

The properties of (79) are the result of the nonlinearity of (64). Also, 
the mean value cannot be zero, because bivariate normal distribution 
has an infinite support. At the same time, this bivariate normal distri-
bution is an approximation that may not work well for values of GPD 
estimates that are far from the mean values. 

For a complete probabilistic characterization of the extrapolated 
estimate, consider the cumulative distribution function (CDF). By the 
definition of CDF: 

CDFP(x) = P(g(ξ̂, σ̂ ) ≤ x )
= P((ξ̂, σ̂ ) ∈ H )

=

∫∫

(ξ,σ)∈H
PDFN(ξ, σ)dξdσ

(80)  

where H is an area in the plane (ξ̂, σ̂ ). 
To evaluate the integrals in (80), the area H should be found. From 

(64), it follows that: 

g(ξ )≤ x⟺σ ≤
ξ(cm − w)

x− ξ − 1
, ξ ∕= 0 (81) 

To include the case x = 0, consider the limit and use L’Hôpital’s rule 
to handle an indeterminate form: 

lim
ξ→0

(
ξ⋅(cm − w)

x− ξ − 1

)

= −
(cm − w)

ln(x)
(82) 

Combining (81) and (82_ defines the boundary of area H: 

σlim(ξ; x> 0)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ(cm − w)
x− ξ− 1

for ξ ∕=0

−
(cm − w)

ln(x)
for ξ= 0

(83) 

Substitution of (83) into (80) yields the CDF 

CDFP(x)=

{∫ ∞

− ∞

(∫ σlim(ξ;x>0)

− ∞
PDFN(ξ, σ)dσ

)

dξ for x ≥0

0 for x< 0
(84) 

The CDF is shown in Fig. 27a. The CDF does not start from zero, 
which is a consequence of some combinations of the shape and scale 
parameters leading to a zero value of the estimated conditional proba-
bility (65). Differentiation of (84) leads to the probability density 
function (PDF) of the extrapolated estimate: 

PDFP(x) =
∫ ∞

− ∞

ξ2x− ξ− 1(cm − w)
(
x− ξ − 1

)2

× PDFN

(

ξ,
ξ⋅(cm − w)

x− ξ − 1

)

dξ

(85) 

Consider some properties of this PDF. Its primitive is not continuous, 
and the CDF may experience a finite jump at x = 0, so the PDF has an 
infinite jump. Indeed: 

lim
x→0

(PDFP(x))=∞ (86)  

∫ 1

0
PDFP(x)dx + CDFP(0)= 1 (87) 

Furthermore, as x is an estimate of probability: 

PDFP(x) ≡ 0 for x∕∈ [0, 1] (88) 

The corresponding PDF is shown in Fig. 27b. 
The substitution of PDFN(ξ̂, σ̂) into (84) completes the consideration 

of the distribution of the extrapolation estimates. However, as was 
mentioned when introducing the GPD with equation (50), the scale 
parameter cannot be negative, while the normal distribution of the pa-
rameters’ estimates formally supports an infinite domain for both pa-
rameters. To avoid possible numerical problems, the bivariate normal 
distribution may be applied to the logarithm of the scale parameter ln(σ)
instead of the scale parameter itself: 

PDFLN(ξ̂, σ̂)= PDFN(ξ̂, ln(σ̂)) (89) 

The mean value, variance and correlation coefficient of the loga-
rithm of the scale parameter are expressed as: 

ELσ = ln(Eσ); VLσ =
Vσ

E2
σ
; rξLσ =

rξσ

Eσ
(90) 

Finally, confidence interval for the extrapolated estimate can be 
constructed with the numerical evaluation of the relevant quantiles 
QP(Pβ), leading to: 

P̂low,up(h> cm|h>w)=QP

(
1 ∓ Pβ

2

)

(91)  

4.6. Behavior of the tail of the distribution of the capsizing metric 

The process of fitting the GPD distribution, described Sections 4.4 
and 4.5 is completely driven by data. While universally applicable, the 
GPD-extrapolation may fail if its shape parameter is estimated to be 
negative and the right bound happens to be below the target (Pipiras, 
2020; Anastopoulos and Spyrou, 2023a). Including physical information 
through a particular value of the shape parameter improves the reli-
ability of extrapolation e.g., (Weems et al., 2023). 
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Glotzer et al. (2017) shows an example where the right bound for 
pitch motion is selected based on the properties of the pitch restoring. 
Using the piecewise linear model, Belenky et al. (2019) found that the 
distribution of peaks of roll angle has a complex tail structure: the tail 
first becomes heavy around the angle of the maximum of the GZ curve 
and then becomes light with a right bound near the angle of vanishing 
stability. As was mentioned in Section 2.8, Glotzer et al., 2024 has 
demonstrated that the piecewise linear model suggests an exponential 
tail for the difference between the roll rate at upcrossing and the critical 
roll rate, i.e., the capsizing metric. Recently published results for the 
statistical validation of the split-time method (Weems et al., 2023) 
confirm the exponential character of the capsizing metric. Below is a 
summary of numerical study of the structure of the tail of the capsizing 
metric, originally published in Belenky et al. (2018). 

The simulations were performed for two of the ONR Topsides Series 
configurations: tumblehome and flared (Bishop et al., 2005). The 
simulation tool was SimpleCode, which was briefly introduced in Sec-
tion 3.1. Three DOFs were modeled: heave, roll and pitch. Nominal 
values were used for added mass and damping, shown in Table 1. No 
diffraction was included in the calculations, and forward speed was 6 
knots. 

The waves were defined by a Bretschneider (1959) spectrum with a 
significant wave height of 9 m and a modal period of 14 s, which cor-
responds to Sea State 7. The KG value was adjusted to make capsizing 
observable and a large-volume sample was produced to compute the 
critical roll rate and the capsizing metric. The GPD was fitted for a series 
of thresholds of the capsizing metric, and the calculations where 
repeated for different wave headings. 

Fig. 28a shows the evolution of the shape parameter estimates (with 
its confidence interval) with the increase of the threshold for beam seas 
(90 deg. heading). The volume of the sample was 875 hours (1750 re-
cords, 30 min each) and contained 3 capsizes, as shown in Table 2. The 
estimates of the shape parameters start from negative values and indi-
cate a clear tendency to increase, reaching zero around the threshold 
value of 0.88 rad/s. The zero value is contained within the confidence 
interval for the rest of the threshold with exception of w = 0.91, 0.914 
and 0.915 rad/s. This picture appears to be consistent with the hy-
pothesis of an exponential tail of the capsizing metric. 

If GPD is fitted to data with a known normal or Rayleigh distribution, 
i.e. where the tail is known to be exponential, the general picture will be 
very similar to the one in Fig. 28a. Both normal and Rayleigh 

distributions contain the square of a variable, with a negative sign. The 
negative square decreases faster than just a line with negative slope. This 
circumstance is seen in the GPD as a negative shape parameter for low 
thresholds. The shape parameter estimate is then expected to stabilize 
around the zero value. Fig. 28a can be interpreted along these lines. 

To observe the effect of stability variation, these calculations were 
repeated for the 45-degree heading (stern quartering seas), with a for-
ward speed of 6 knots. The sample size was increased to 5000 hours 
(10,000 30-min records), and contains 206 cases of capsizing. Fig. 28b 
shows the result, which is dramatically different from the previous, 
beam seas case. The estimate starts near zero and shows two minima 
around thresholds 0.65 and 1.01 rad/s. 

To find how repeatable this behavior is, the calculations were 
repeated for the 50-degree heading using an even larger sample of 
16,000 hours, where 1093 capsize cases were observed, see Fig. 28c and 
Table 2. The behavior of the shape parameter estimate did not change, 
but the confidence interval has shrunk as the volume of the sample has 
increased. 

A further increase of the heading, toward beam seas, is expected to 
bring the tail to exponential as the influence of the stability variation 
gets weaker. Fig. 28d contains an estimate of the shape parameters for 
the 70-degree heading. As in the previous case, the volume of sample 
was large – 16,000 hours with 1003 capsizing case observed (see 
Table 2). The behavior of the estimate is very similar to the beam seas 
result in Fig. 28a, except the stabilization of the shape parameter esti-
mate occurs for a larger threshold value, w = 1.0 rad/s, as opposed to the 
w = 0.88 rad/s in the beam seas case. 

Thus, the “double minima” topology of the shape parameter esti-
mated for 45

◦

and 50◦ headings can be attributed to compolex distri-
bution of stability characteristics in waves. Another possible explanation 
may be related to energy transfer from roll to heave and pitch; similar 
behavior of the shape parameter has been observed for a tail approxi-
mation of roll peaks, see Campbell et al. (2023). However, is this pre-
liminary conclusion applicable to other hull forms? 

Fig. 28e is a plot for the shape parameter estimated for ONR Topsides 
Series flared hull (ONRFL) sailing with a heading of 45◦. This hull has 
the same shape as the ONR tumblehome hull (ONRTH) below the design 
waterline, but a flared topside similar to conventional destroyers. The 
sample was also large: 16,000 hours with 53 observed capsizing cases 
(Table 2). The behavior of the shape parameter estimate is consistent 
with the hypothesis of an exponential tail. Thus, the “double minima” 
topology is a result of specific features of stability variation with the 
ONR tumblehome hull and is not necessarily applicable for other hull 
configurations. 

4.7. Fitting exponential tail of distribution for the capsizing metric 

The exponential tail of the distribution is one of the particular cases 
of GPD when the shape parameter is exactly zero, equation (50). The 
exponential tail has only the scale parameter β (usually used for the 
exponential distribution instead of σ): 

Fig. 27. CFD and PDF of the extrapolated estimate (Belenky et al., 2014).  

Table 1 
Nominal values for added mass and damping.  

Paramters Values 

Ratio of added mass in heave to mass of the ship A33/M 1.0 
Ratio of added mass in roll to transversal moment of inertia A44/Ix 0.25 
Ratio of added mass in pitch to longitudinal moment of inertia A55/Iy 1.0 
Damping in heave, fraction of critical 0.5 
Damping in roll, fraction of critical 0.15 
Damping in pitch, fraction of critical 0.5  
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PDFEXP(x) =

⎧
⎪⎨

⎪⎩

1
β

exp
(

−
x − w

β

)

for  x ≥ w

0 for x < w
(92) 

Being a conditional exponential distribution, the exponential tail 
inherits all the important properties of the former; in particular, the 
inversed scale parameter is equal to the mean value of the variable 
above the threshold, while its variance is equal to its square: 

E(x − w) = β, Var(x − w) = β2 (93) 

Estimating the exponential scale parameter from the data is straight- 
forward: 

β̂ =
1
N

∑N

i=1
zi (94)  

where N is the number of data points above a threshold w, and zi = hi −

w are the sample data points above a threshold w. 
Constructing the confidence interval for the estimate of the expo-

nential scale parameter is completed as for any other mean value esti-
mate. The variance of the estimate is computed through the variance of 
the data points above the threshold: 

V̂ z =
1

N − 1
∑N

i=1
(zi − β̂)2

, V̂β =
V̂ z

N
(95) 

Assuming a normal distribution for the estimate of the exponential 
scale parameter, the boundaries of its confidence interval are: 

β̂up,low = β̂ ± QN V̂
0.5
β (96)  

where QN is the standard normal quantile; for confidence probability 
Pβ = 0.95, QN = 1.96. 

Fitting an exponential tail generally follows the same steps as the 
GPD approximation, including the selection of an appropriate threshold. 
Two methods for the threshold selection for the capsizing metric were 
described in (Belenky et al., 2018a): Goodness-of-fit Test and Prediction 
Error Criterion. The former was later retired due to ambiguity of setting 
the level of significance, but both these methods where used in the 
statistical validation effort of Weems et al. (2023). Both methods are 
described here. 

The goodness-of-fit method was developed by Stephens (1974) by 
modifying the traditional Kolmogorov-Smirnov (KS) goodness-of-fit test 
for the exponential distribution and for the case when the parameter is 
unknown and needs to be estimated. The fit test is based on the 

Fig. 28. Behavior of the shape parameter estimates (a) ONRTH, beam seas, KG = 8.35 m; (b) ONRTH, heading 45 deg., KG = 7.85 m; (c) ONRTH, heading 50 deg., 
KG = 7.85 m; (d) ONRTH, heading 70 deg., KG = 8.00 m (e) ONRFL, heading 45 deg., KG = 8.8 m (Belenky et al., 2018). 

Table 2 
Conditions for study of shape parameter.  

Ship Heading deg. KG, m GM Numb. caps. Time, hrs. 

TH 45 7.85 1.85 206 5000 
TH 50 7.85 1.85 1093 16,000 
TH 70 8.00 1.71 1003 16,000 
TH 90 8.35 1.36 3 875 
FL 45 8.80 0.33 53 16,000  
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maximum distance between the theoretical (exponential in this case) 
and observed distributions. The null hypothesis H0 is such that the 
observed data follows the theoretical distribution. 

To use the goodness-of-fit test, the data above each candidate 
threshold is sorted in ascending order yi = sort(zi), i= 1,…N. The 
theoretical CDF is expressed as: 

CDFi= 1− exp
(

−
yi

β̂

)

(97) 

The maximum distance between the observed and theoretical 
distribution: 

D=max{D+,D− },D+ = max
i=1,…,N

⃒
⃒
⃒
⃒

i
N
− cdfi

⃒
⃒
⃒
⃒,D

− = max
i=1,…,N

⃒
⃒
⃒
⃒cdfi −

i− 1
N

⃒
⃒
⃒
⃒ (98) 

The test statistic for the null hypothesis is defined as: 

D∗ =

(

D−
0.2
N

)(
̅̅̅̅
N

√
+0.26+

0.5̅̅̅
̅

N
√

)

(99) 

The critical values for D* are available from Stephens (1974) and are 
listed in Table 3 for several p-values, the probability that the observed 
difference is caused by random reasons (if this probability is too small, a 
systematic difference is observed and the null hypothesis has to be 
rejected). 

For each of the candidate thresholds, the test statistic D∗ is computed. 
The p-value is found from Table 3. Since Table 3 has critical values for 
only a limited number of probabilities, the resulting p-value is taken as 
the number whose critical value is the largest but still smaller than 
computed test statistics D∗; e.g. for D∗ = 0.8, p= 0.3. 

A final threshold is selected as the largest w above which all the 
thresholds have their associated p-values exceeding the accepted sig-
nificance level. A significance level of 5 % seems reasonable at first 
glance, but it should be larger for the extrapolation to work, roughly 10 
% or above. That is, the exponential distribution provides an adequate 
fit of the thresholds above the selected one. A numerical example of the 
selected thresholds for two datasets are summarized in Table 4 where 
the results look consistent in terms of the selected threshold. The slight 
increase of the selected threshold with the increase of the significance 
level can be explained by the more stringent requirement for the 
goodness-of-fit associated with the larger p-value. 

A prediction error criterion for selecting a threshold for the extrap-
olation with an exponential distribution can be found in Mager (2015). 
This method is based on the following principle. Let yn≤ … ≤ y1 be the 
upper order statistics of the observations hi, i.e., the result of sorting 
these observation in descending order: 

y→= sortdesc

(
h
→)⇒yn≤ …≤ y1 (100) 

A threshold w will be chosen as w = yk+1 and thus is associated with 
the (k+1)th largest observation and the index (k+ 1). For this w = yk+1, 
let si = yi − w, i= 1,…,k. 

The focus of the method is on the so-called mean squared prediction 
error defined as: 

Γ(k)=
1
k
∑k

i=1
E

(
(ŝi− Esi)

2

Var(si)

)

(101)  

where ̂si is the estimated value of si according to the exponential model. 

The basic idea behind the threshold selection is to choose k, which 
minimizes an estimate of Γ(k). 

To estimate Γ(k), it is first expressed as: 

Γ(k) =
1
k
∑k

i=1
E

((
x̂i,k − xi,k

)2

Var
(
xi,k
)

)

+
2
k
∑k

i=1

Cov(x̂i,k, xi,k
)

Var
(
xi,k
) − 1 (102) 

The equality is proved in Mager (2015), Lemma 4.2. The derivation is 
also available from Campbell et al. (2023). The estimator of Γ(k) is then 
defined as: 

Γ̂(k) =
1
k

∑k

i=1

(
x̂i,k − xi,k

)2

V̂ar
(
xi,k
) +

2
k

∑k

i=1

Ĉov(x̂i,k, xi,k
)

V̂ar
(
xi,k
) − 1 (103) 

The index k̂ for the threshold selection is chosen as that which 
minimizes Γ̂(k) over some range of values of k. Mager (2015) suggests 
using the range [max(40,0.02N),0.2N], where N is the total number of 
points available. 

To conclude the description of the method, it is necessary to specify 
the various quantities in the definition of Γ̂(k). Under the exponential 
model, the distributions of the order statistics si are well-known e.g., 
Example 4.1.5 in (Embrechts et al., 2013). The details on a derivation 
are also available from Campbell et al. (2023) where a similar prediction 
error function for Pareto distribution is described. The result is 

Var(si)= β2
∑k

j=i

1
j2 ≈ β21

k

(
k+1

i
− 1
)

(104) 

This approximation is used by Mager (2015). This quantity can then 
naturally be estimated through 

V̂ar
(
si,
)
= β̂21

k

(
k+1

i
− 1
)

(105)  

where β̂ is defined in equation (94). 
The estimator ̂si of si is defined as follows. One can think of si as the 

(1 − i/(k+1))th quantile of the exponential distribution. But for this 
distribution, this quantile is − β ln(i /(k+ 1)), which suggests using: 

ŝi= − β̂ln
(

i
k+1

)

(106) 

With details available from Campbell et al. (2023), the following is 
the result 

Cov
(

ŝi, si,
)
≈

β2

k

(

ln
(

i
k + 1

))2

(107) 

This suggests the use of: 

Ĉov
(

ŝi, si,
)
=

β̂2

k

(

ln
(

i
k+1

))2

(108) 

Substituting these quantities into the definition of Γ̂(k) from equa-
tion (103) leads to the expression: 

Γ̂(k) = β̂ − 2
∑k

i=1

(
k + 1

i
− 1
)− 1 (

si + β̂ln
(

i
k + 1

))2

+
2
k

∑k

i=1

(
k + 1

i
− 1
)− 1(

ln
(

i
k + 1

))2

− 1 (109) 

This also appears in Mager (2015), at the bottom of p. 64. A 

Table 3 
Critical value of D*.  

Parameter Value 

p-value 0.01 0.025 0.05 0.10 0.15 0.20 
D* 1.308 1.190 1.094 0.990 0.926 0.880 
p-value 0.25 0.30 0.35 0.40 0.45 0.50 
D* 0.835 0.795 0.766 0.736 0.710 0.685  

Table 4 
Numerical example of threshold selection with goodness-of-fit test.  

p-value 0.1 0.2 0.3 0.4 0.5 

w, rad/s, Data set 1 0.521 0.534 0.534 0.699 0.699 
w, rad/s, Data set 2 0.657 0.666 0.666 0.666 0.670  
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numerical example of Γ̂(k) is in Fig. 29. 
Once the threshold has been selected, the calculation of the extrap-

olated estimate and its confidence interval is straightforward: 

P̂(h > cm|h > w) = P̂(h > c) = exp
(
− β̂ − 1(c − w)

)
(110)  

P̂low,up(h> cm|h>w)= exp
(
− β̂

− 1
low,up(c − w)

)
(111) 

A comparison of the rates of capsizing estimated with different 
methods will be presented in Section 5. 

5. Estimation of rate of capsizing 

5.1. Non-rare problem and the rate of capsizing estimate 

Equation (23) describes a random event of capsizing as an upcrossing 
of an intermediate level ϕm0 by a roll motion process when the metric 
(52) exceeds its target value cm. The later was referred as the rare 
problem, while the former was identified as the non-rare problem. This 
terminology reflects the notion that upcrossing events are readily 
observed in normal simulation, while capsizing is not. 

Estimating the rate of upcrossing events is straightforward: 

r̂U =
NU

∑NR
i=1TRi

(112)  

where TRi is a duration of ith record, and NU is the number of upcrossing 
events. Alternative methods are described in Wandji et al. (2024). 

Defining the number of upcrossing events deserves some discussion. 
The total number of observed upcrossing events of the intermediate level 
ϕm0 is not relevant, as the extreme value theory for the rare problem 
requires independent data, see Subsection 4.2. The declustering pro-
cedure, described in Subsection 4.3, selects independent upcrossing 
events. The number of independent upcrossings is equal to the number 
of clusters in the data. 

The second extreme-value theorem is a main vehicle for the rare 
problem; a tail of the capsizing metric distribution was fitted. The 
threshold, where the tail starts, was found as a part of the tail fitting 
procedure, described in Sections 4.4 for GPD and 4.7 for the exponential 
tail. Not every capsizing metric value, corresponding to a selected 
upcrossing event, is used for fitting the tail – only those that exceed the 
threshold. 

Thus, the number of upcrossing events in equation (112) is equal to 
N, the number of capsizing metric data points above the selected 
threshold w, as defined for the equation (50): 

NU =N (113) 

This threshold w selected for fitting the tail now serves as a separa-
tion point between the non-rare and rare problems. Crossing this 
threshold by the capsizing metric data is still the observable event, while 
extreme properties can be claimed for the data above this threshold. 

The complete estimate for the rate of capsizing is expressed as: 

r̂C =
N

∑NR
i=1TRi

P̂(h > cm|h > w) (114)  

where h and cm are defined in equation (52) and is determined by one of 
the procedures described in Sections 4.3 or 4.7. 

5.2. Uncertainty of the capsizing rate estimate 

The capsizing rate estimate (114) is a product of two estimates: the 
rate of upcrossings of the threshold w and the probability of exceedance 
of the extrapolation target cm, associated with a capsizing event. 
Assuming independence of the estimates, a confidence interval can be 
constructed by multiplying the boundaries of the components: 

r̂C,low = r̂U,low⋅P̂low(h > cm|h > w),
r̂C,up = r̂U,up⋅P̂up(h > cm|h > w),

(115)  

where P̂low,up(h> cm|h> w) are the boundaries of confidence interval for 
the rare problem defined with equations (73), (74), (91) and (111), 
while r̂U,low and r̂U,up are the boundaries of the confidence interval for 
the upcrossing rate through the threshold w, i.e. the non-rare problem. 

As a boundary of the confidence interval is a product, the confidence 
probability for each of the boundaries has to be considered as Pβ1 =
̅̅̅̅̅
Pβ

√
. The counting of upcrossing events is essentially a Bernoulli trial 

(at each time instant, an upcrossing event either occurs or not), so the 
crossing rate estimate follows binomial distribution with the parameter: 

p̂U = r̂UΔt (116)  

where Δt is the time increment in the numerical simulation of ship 
motions. The boundaries of the confidence interval are expressed 
through the appropriate quantiles of binomial distribution, while 
alternative methods are available from Wandji et al. (2024): 

r̂U,low = QB

(
1 − Pβ1

2
; p̂U ,NU

)

r̂U,Up = QB

(
1 + Pβ1

2
; p̂U ,NU

) (117) 

For boundaries of confidence interval for GPD-extrapolated estimate 
computed with equations 71 and 72, the confidence probability has to 
be considered as Pβ2 =

̅̅̅̅̅̅̅
Pβ1

√
=

̅̅̅̅̅
Pβ

4
√

. 

5.3. Numerical example of estimation of capsizing rate 

Numerical example of estimation of capsizing rate was computed 
with SimpleCode for ONR Topside Series tumblehome configuration 
(Bishop et al., 2005). The significant wave height was 9 m, modal period 
was 14 s, forward speed was 6 knots in stern quartering seas (heading 
45◦), GM value was set to 2.2 m. Simulation was performed with 3-DOF 
(heave, roll, pitch). The dynamic characteristics for added mass and 
damping are provided in Table 1. 

The data from this example has been used for illustrations 
throughout this paper. Figs. 11 and 12 show an episode of pure loss of 
stability, leading to a large roll angle, and a small difference between roll 
rate at the instant of upcrossing and the critical roll rate. The declus-
tering procedure for one of the records was illustrated in Fig. 20. The 
simulations consist of 200 30-min records, providing 800 values of 
capsizing metric after the declustering procedure was applied. 

Fig. 21 shows the negative log likelihood computed for a threshold 
that was close to the value that was selected. Fig. 22 through 25 depict 
selection of the threshold for GPD, using all four considered procedures. 
Table 4 includes the results of the threshold selection for the exponential 
tail with the goodness-of-fit test, while Fig. 29 illustrates the application 
of the prediction error criterion. Finally, Fig. 30a contains the rate of 

Fig. 29. Error function for threshold selection with the predication 
error criterion. 
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capsizing estimated with different methods: GPD tail with two tech-
niques for computing the confidence interval (the extrapolated estimate 
remains the same) and two methods for selecting the threshold for the 
exponential tail (the capsizing rate changes with extrapolated estimate). 

To see the influence of data variability, a second data set has been 
generated; the quantity of data was the same with 800 independent 
capsizing metric values. The results of the threshold selection for the 
exponential tail with goodness-of-fit method is for the second data set 
was placed in Table 4. The estimates of the capsizing rates for the second 
dataset are shown in Fig. 30b. A “true” capsizing rate value was added to 
Fig. 30 from validation data (Weems et al., 2023). Confidence intervals 
of all of the results captures the “true” value with exception of the GPD 
case with confidence interval (91) in Fig. 30b. 

No influence of the data variation on the threshold selection is 
observed in Table 4. More difference is evident between the two datasets 
in Fig. 30. The most obvious influence of the data variation is in the GPD 
extrapolation. The capsizing rate estimates based on GPD and expo-
nential tail extrapolation are consistent for the first data set in Fig. 30a. 
The capsizing rate, estimated with GPD for the second dataset, shown in 
Fig. 30b, has zero for the most probable value, while the mean recovers a 
non-zero value. It is an illustration of one of the “pitfalls” of GPD – the 
shape parameter is too small and the right bound is located before the 
extrapolated target. This is a result of the natural variability of the data, 
as warned by Pipiras (2020), Anastopoulos and Spyrou (2023a). 

At the same time, all data variability influences are well within the 
confidence interval for the exponential tail extrapolation, indicating the 
robustness the approximation. As expected, the GPD-based estimate 
(when successful) has wider confidence interval, compared to the 
exponential tail: any physics-informed extrapolation method is expected 
to have less uncertainty. This is consistent with observations described 
in the previous works, e.g., (Glotzer et al., 2017). However, the upper 
boundary of GPD-based estimate computed with its CDF (Fig. 30a) is not 
significantly more conservative compared to the exponential tail. The 
“boundary” method (73, 74) provided more conservatism, but this is 
expected. The most consistent results were achieved with the estimate 
based on the exponential tail and the prediction error criterion for the 
threshold selection. These results are in-line with the validation and 
performance study of split-time method for capsizing probability 
described by Weems et al. (2023). 

6. Summary 

The significant length of this paper may be justified by the 
complexity of the subject of the probability of capsizing and the 

intention to track the development of the split-time method from 
reduced-order models of nonlinear roll to physics-informed numerical 
application. Some key points regarding the method are listed below. 

The capsizing of an intact ship in irregular ocean waves is a rare 
event that can be modeled as Poisson flow. Poisson flow provides a 
relationship between probability and time of exposure. Evaluation of 
capsizing rate is sufficient in order to compute the probability of 
capsizing over a given period of time. 

A piecewise linear dynamical system is introduced as a single degree- 
of-freedom ordinary differential equation with three-range piecewise 
linear restoring. The piecewise linear system is a combination of 
attractor and repeller and is configured to have two stable equilibria 
(“upright” and “upside-down”) and one unstable equilibrium between 
them. 

The piecewise linear system models the very essence of the capsizing 
— a transition to motion around the upside-down equilibrium. While 
quite exotic for ship dynamics application, the piecewise linear system is 
still physical. A force does not have to be smooth (or even continuous, e. 
g., dry friction) in mechanics. Velocity and displacement being primi-
tives of acceleration are smooth in a dynamical system with piecewise 
linear restoring. 

The piecewise linear dynamical system is essentially nonlinear, with 
its nonlinearity concentrated in a single point. The piecewise linear 
system has most of the nonlinear properties of the single DOF equation 
of roll motion with a smooth roll restoring (GZ) curve. The piecewise 
linear system can therefore be used as a qualitative reduced-order model 
of large roll motions, and the transition to motion near the “upside 
down” equilibrium is a qualitative description of the capsizing of a ship 
in waves. 

The piecewise linear dynamical system allows an analytical solution 
for the rate of capsizing. It is constructed from two components. The first 
component is a rate of upcrossing of a boundary between the two in-
tervals. The second component is a probability of exceedance of a crit-
ical value by the roll rate at the instant of upcrossing. The critical value is 
expressed analytically from the solution for the repeller part of the 
piecewise linear dynamical system. The roll rate at the instant of 
upcrossing follows a Rayleigh distribution, so the probability of ex-
ceedance can be expressed explicitly. 

The piecewise linear dynamical system may account for additional 
factors such as gusty wind, drift and the variation of stability in waves. 
These additional factors are reflected in probabilistic characteristics of 
the critical roll rate as well as in the rate of upcrossing through char-
acteristics of the roll motion. 

The study of capsizing, using the piecewise linear system, inspires 

Fig. 30. Estimates of capsizing rate in comparison with the “true” value from validation data (Weems et al., 2023) with confidence interval; (a) data set 1 (b) data 
set 2. 
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the formulation of a principle of separation of a complex probabilistic 
problem into two less complex ones. The non-rare problem is calculation 
of rate of upcrossings over a boundary that may be set low enough to 
observe and count these upcrossings. The rare problem is the evaluation 
of probability of capsizing after upcrossing. 

The split-time method is a result of recasting of ideas, formulated for 
the piecewise linear system, for a numerical simulation tool. An inter-
mediate level for the roll angle is introduced to play the role of the 
boundary of the two ranges in the piecewise linear system. A critical roll 
rate is computed at each instant of upcrossing of the intermediate level. 
These calculations are performed by systematically perturbing the roll 
rate at the instant of upcrossing. The perturbed simulations are started at 
the instant of upcrossing and run for a short duration of time. The initial 
roll rate is increased until capsizing is observed. The perturbation sim-
ulations are performed for each upcrossing, creating a dataset of the 
observed and critical roll rates at the instants of upcrossing. 

A metric of the likelihood of capsizing is defined as the difference 
between the critical roll rate and the observed roll rate at each instant of 
upcrossing. The smaller this difference is, the more likely capsizing is to 
occur. As the metric is computed through simulation forward into the 
future, it includes the physical behavior of large roll motion and the 
changing stability in waves. Whatever phenomena may occur, they are 
included in the perturbation simulations. In a sense, the capsizing metric 
dataset contains information on “what would have happened if …“. 

As the capsizing metric dataset contains information on potential 
capsizing, the extrapolation of this data can produce an estimate of 
probability of capsizing, which is the solution for the rare problem. The 
non-rare problem is the estimation of the rate of upcrossing of the in-
termediate level. 

Extrapolation of the capsizing metric is approached through the 
application of extreme value theory, which states that the tail of a dis-
tribution above a large enough threshold can be approximated with a 
Generalized Pareto Distribution (GPD). The shape and scale parameters 
of the GPD are found with the log-likelihood method. The large-enough 
threshold can be found by stabilization of the shape parameter, which is 
an indicator of the applicability of extreme value theory, or by a mini-
mization of difference between the GPD and the observed distribution. 

The extrapolation of the data with GPD may fail due to the natural 
variability of the data. If the shape parameter estimate is negative, it 
introduces a bound of the distribution that may be below the target of 
extrapolation, leading to a zero-answer. 

The extrapolation may become physics-informed by imposing a 
condition for the shape parameter, based on physical consideration, 
rather than estimating the shape parameter from the data. A distribution 
of the capsizing metric of piecewise linear system has an exponential 
tail, i.e., the shape parameter is zero. Large-volume numerical simula-
tions have a shape-parameter estimate approaching zero, as capsizing 
becomes observable, i.e. did not reject the exponential tail of the 
capsizing metric. The extrapolation of the capsizing metric with expo-
nential tail follows the same steps as the GPD tail extrapolation, being a 
special case of it, but is more robust and provide less statistical uncer-
tainty compare to GPD. 

7. Conclusions 

Physics-informed extrapolation unlocks the full power of extreme 
value theory and allows the extension of data-driven approach towards 
estimating a probability of the occurrence of a rare capsizing event that 
was not observed in available data. Information of these possible, but 
not-yet-observed rare capsizing events can be extracted from a dynam-
ical system through finite perturbation. The differences between un-
perturbed and perturbed, leading-to-capsizing roll rate values makes a 
metric of likelihood of capsizing at a particular moment of time. The 
computed instances of the metric make new data to which the extreme 
value theory can be applied. 

A reduced-order model of roll motions with piecewise linear 

restoring provides a simple but qualitatively valid model of capsizing as 
a transition to motion near the “upside-down” equilibrium. The piece-
wise linear model allows closed-form solution for the probability of 
capsizing and uncovers a type of exponential tail for the distribution of 
the capsizing metric. The physical information on capsizing is used twice 
in the described approach: to create the data and to characterize its 
extreme behavior. 

The split-time method may be useful for the extrapolation of the 
response of dynamical systems when phenomena associated with a 
large-magnitude response is not normally present in the data. In addi-
tion to capsizing, broaching-to and water-on-deck problems may be 
considered as potential candidates for the application of the split-time 
method. An attempt to study broaching in irregular wave with pertur-
bation is described in Belenky et al. (2023), while the application of 
split-time method for water-on-deck problem will require perturbations 
to be performed with unsteady Reynolds-averaged Navier-Stokes 
(URANS) simulations. 

CRediT authorship contribution statement 

Vadim Belenky: Conceptualization, Data curation, Formal analysis, 
Investigation, Methodology, Writing – original draft. Kenneth M. 
Weems: Data curation, Investigation, Methodology, Software, Valida-
tion, Writing – review & editing. Woei-Min Lin: Project administration, 
Supervision, Writing – review & editing. Vladas Pipiras: Formal anal-
ysis, Investigation, Methodology, Writing – review & editing. Themis-
toklis P. Sapsis: Formal analysis, Investigation, Methodology, Writing – 
review & editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgements 

The work described in this paper has been funded since 2006 by the 
Office of Naval Research (ONR) under Dr. Patrick Purtell, Dr. Ki-Han 
Kim, and Dr. Thomas Fu. This work was also supported by the Naval 
Surface Warfare Center Carderock Division (NSWCCD) Independent 
Applied Research (IAR) program under Dr. Jack Price. 

Besides the ONR funding, the participation of Prof. Sapsis was also 
facilitated by the NSWCCD Summer Faculty Program, while the partic-
ipation of Prof. Pipiras was alsofacilitated by the NSWCCD Summer 
Faculty and Sabbatical Programs, both of which were also managed by 
Dr. Jack Price. 

Over the years of the research, many colleagues have influenced and 
contributed to our work. The authors would like acknowledge Dr. Art 
Reed, Mr. Tim Smith, Mr. Brad Campbell (NSWCCD, David Taylor Model 
Basin), Prof. Kostas Spyrou (National Technical University of Athens, 
Greece), Prof. Naoya Umeda (University of Osaka, Japan), Prof. Pol 
Spanos (Rice University) and the late Prof. Ross Leadbetter (University 
of North Carolina at Chapel Hill). 

References 

Alford, L.K., Troesch, A.W., 2009. Generating extreme ship responses using non-uniform 
phase distributions. Ocean Eng. 36 (9–10), 641–649. 

Anastopoulos, P.A., Spyrou, K.J., 2019. Evaluation of the critical wave groups method in 
calculating the probability of ship capsize in beam seas. Ocean Eng. 187, 106213. 

V. Belenky et al.                                                                                                                                                                                                                                 

http://refhub.elsevier.com/S0029-8018(23)02836-6/sref1
http://refhub.elsevier.com/S0029-8018(23)02836-6/sref1
http://refhub.elsevier.com/S0029-8018(23)02836-6/sref2
http://refhub.elsevier.com/S0029-8018(23)02836-6/sref2


Ocean Engineering 292 (2024) 116452

26

Anastopoulos, P.A., Spyrou, K.J., 2022. Extrapolation over Significant Wave Height with 
the Aid of Stochastic Wave Groups Theory. Proc. 18th Intl. Ship Stability Workshop, 
Gdansk, Poland, pp. 125–136. 

Anastopoulos, P.A., Spyrou, K., 2023. An efficient formulation of the critical wave groups 
method for the assessment of ship stability in beam seas. In: Spyrou, K., Belenky, V., 
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Tonguć, E., Söding, H., 1986. Computing capsizing frequencies of ships in a seaway. In: 
Proc. 3rd Intl. Conf. On Stability of Ships and Ocean Vehicles (STAB 1986), vol. 2. 
Addendum 1, Gdansk, Poland, pp. 51–60. 

Umeda, N., Yamakoshi, Y., 1994. Probability of ship capsizing due to pure loss of 
stability in irregular quartering seas. Naval Architecture and Ocean Engineering 30, 
73–85. 

Umeda, N., Yamakoshi, Y., Tsuchiya, T., 1990. Probabilistic study on ship capsizing due 
to pure loss of stability in irregular quartering seas. In: Proc. Of 4th Intl. Conf. on 
Stability Of Ships And Ocean Vehicles (STAB 1990), Naples, Italy, vol. 1, pp. 328–335. 

Wandji, C., 2023. Review of probabilistic methods for direct dynamic stability of ships in 
random seaway. In: Spyrou, K., Belenky, V., Katayama, T., Bačkalov, I., 
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