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Abstract14

A significant portion of atmospheric CO2 emissions is absorbed by the ocean, resulting in15

acidified seawater and altered carbonate composition that is harmful to marine life. Despite16

detrimental effects, understanding the severity of ocean and coastal acidification (OCA) is17

difficult due to the scarcity of in-situ measurements and the high costs of computational18

modeling. We develop a parsimonious data-driven framework to model indicators of OCA,19

and we test the framework in the Massachusetts Bay and Stellwagen Bank, a region with20

considerable fishing and tourism industries affected by OCA. First, we trained a neural21

network to predict in-depth fields for temperature and salinity (x, y, z) using surface quantities22

from satellites and in-situ measurements (x, y). The relationship between 2D surface and 3D23

properties is captured through the in-depth modes and coefficients obtained from principal24

component analysis applied to a high-resolution historical reanalysis data set. Next, we25

used Bayesian regression methods to estimate region-specific relationships for in-depth total26

alkalinity (TA), dissolved inorganic carbon (DIC), and aragonite saturation state (ΩAr) as a27

function of in-depth temperature, in-depth salinity, and surface chlorophyll-a concentration.28

Lastly, 4D field predictions are made from surface measurements using the neural network29

followed by the regression models. The model’s performance is evaluated using withheld30

measurements at multiple depths, locations, and seasons, and the near real-time predictions31

for temperature, salinity, TA, DIC, and ΩAr are useful for understanding the impacts and32

evolution of OCA. Each step of the framework includes uncertainty quantification which can33

be used for future planning and optimal sensor placement.34

Plain Language Summary35

About a quarter of carbon dioxide emissions in the atmosphere is absorbed by the36

oceans. When this carbon dioxide dissolves in seawater, it results in ocean acidification. A37

useful indicator of ocean acidification is the saturation state of aragonite, a type of calcium38

carbonate used by organisms that form shells. However, understanding the effects of ocean39

acidification is difficult due to the lack of observations and the high cost and complexity of40

modeling. We present a data-driven approach to model carbonate chemistry using readily41

available observations from satellites and low-cost sensors. Given surface measurements of42

temperature, salinity, and chlorophyll, our machine learning model produces temperature,43

salinity, total alkalinity, dissolved inorganic carbon, and aragonite saturation state covering44

spatial (latitude, longitude, depth) and temporal domains for these variables. Compared45

to withheld observations, our model achieved reasonable accuracy across many seasons and46

depths, a level of resolution not matched by other models for the same set of inputs. Our47

model is useful for monitoring, decision making, and future planning.48

1 Introduction49

1.1 Ocean and Coastal Acidification50

Each year, the oceans absorb approximately 9 billion tons of CO2, corresponding to a51

quarter of atmospheric CO2 emissions [1, 2]. Since the industrial revolution, these changes52

in the seawater-carbonate system have resulted in an approximately 30% increase in ocean53

acidity, a process called Ocean Acidification (OA), with a projected doubling of this increase54

by the end of the century [3, 4]. OA results in increased concentrations of dissolved inorganic55

carbon (DIC), increased partial pressure of carbon dioxide (pCO2), and a lower pH. These56

changes in seawater decrease the availability of carbonate ions, affecting the state of saturation57

of calcium carbonate. The saturation state of aragonite (ΩAr), a type of calcium carbonate58

that many marine organisms use to build their shells [5] is a very important indicator of OA.59

While OA is largely driven by atmospheric CO2, other physical and biogeochemical60

processes (e.g. stratification, excess nutrients, and freshwater) can exacerbate acidification.61

The complex interplay of these processes in nearshore areas, referred to as Ocean and62
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Coastal Acidification (OCA), varies widely across seasons and regions. For example, OCA63

is particularly intensified along the coast of the US Northeast where heavy precipitation64

coupled with significant freshwater and nutrients from runoff lower the Total Alkalinity (TA)65

and lead to a reduced buffering capacity, especially in regions near estuaries [6]. In such66

conditions, pH and ΩAr can change more easily and more rapidly than in waters with high67

buffering capacity.68

We focus specifically on the Massachusetts Bay (Mass Bay) and Stellwagen Bank, a69

nearshore subset of the larger Gulf of Maine (GOM) [7]. The impact of OCA in marine70

resources of the region has been extensively documented [8, 9], and recently reviewed [10].71

Furthermore, this region has shown changes in physical characteristics such as increases in72

temperature and salinity, together with changes in summer wind patterns, which have been73

related to low bottom dissolved oxygen conditions when compared to the 1992-2000 baseline74

data [11, 12]. These types of changes are known to produce concurrent fluctuations of pH in75

nearshore ecosystems, are likely to exacerbate the impacts of OCA, and will particularly76

affect bottom dwellers such as lobsters, sand lance, and sea scallops that are key in the77

regional blue economy [13, 14, 15]. Monitoring and predicting OCA is crucial because coastal78

ecosystems such as those in the GOM sustain major fishery and tourism industries [16].79

Beyond being harmful to commercially relevant fish and shellfish, OCA will have effects on80

a myriad of other marine species with mostly unknown ecological consequences, such as81

possible food web failures [17, 18].82

Despite the negative biological and economic consequences of OCA, predictive capability83

is still limited, and efforts are being made to advance observation and the development84

of data products [19]. High-fidelity physics-based numerical models are unattainable for85

the foreseeable future due to the difficulty of modeling the multi-scale and multi-physics86

problem, which consists of complex physicochemical and biological processes, and their87

interactions with ocean currents and circulations. As an alternative, changes in OCA can88

be monitored with in-situ measurements, but the process of acquiring water samples over89

large domains at a high spatiotemporal resolution is expensive. Remote sensing is also a90

useful option, but measurements are often only available for certain quantities, they are at91

the surface, and they are often inconsistent (e.g. due to clouds). Empirical relationships92

are a promising hybrid approach, but in many cases, these types of models only provide93

estimates for indicators of OCA in locations where in-situ samples of explanatory variables94

are collected rather than for a full field. We propose a new data-driven framework which95

relies on a combination of data from all of the aforementioned sources. In our framework,96

we train a physics-informed machine learning (ML) model on data from a high-resolution97

numerical simulation, and we use this model to make predictions given in-situ measurements98

and satellite remote sensing data. Before going into the details of our own model, we discuss99

more examples and advancements of data-driven empirical models in the following section100

[20, 21, 22, 23, 24, 25, 26].101

1.2 Empirical Models102

The basis for our model was inspired by other models in the literature that use some103

form of regression to develop empirical relationships for the seawater-carbonate system104

between available quantities and quantities of interest.105

One of the earlier papers on the development of empirical relationships for OA focused106

on the Pacific Northwest [20]. This study used a standard multiple linear regression model107

to predict ΩAr as a function of temperature, oxygen, and a temperature-oxygen interaction108

term with measurements between 30m and 300m during May 2007. The training root mean109

squared error (RMSE) for ΩAr was found to be 0.053, but no validation RMSE was reported,110

so it is difficult to assess the potential risk of model overfitting. A 2011 follow up study by111

Juranek et al. applied the same methodology to the Northeast Subarctic Pacific [21]. This112

study focused on measurements between 30m and 500m. Calibration (training) data was113
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collected between March 2006 and September 2008, and between February 2010 to early114

2011. Validation data for one buoy (station P20) was collected between February and June115

2010. The training RMSE was 4.8 µmol·kg−1 for TA, 3.5 µmol·kg−1 for DIC, and 0.052 for116

ΩAr. Again, no validation RMSE was reported.117

Following these papers, Davis et al. 2018 published a similar study which focused on118

the Central California Current System (CCS) in Northern California [22]. The model was119

produced using training data that were collected up to three times annually (2012 - 2015)120

between May and September, and between depths of 27m and 227m. The validation data121

were collected yearly from five on-shelf locations along the Bodega Line, between 1m and122

200m. ΩAr was modeled using multiple linear regression with temperature, salinity, dissolved123

oxygen, and interaction terms as regressors. The training and validation R2 were found to124

be 0.92 and 0.79 respectively. No good relationship was found for data in September, so125

measurements from that month were excluded from training and validation.126

In 2020, McGarry et al. published a new multiple regression model for the GOM [24].127

The training data were collected in summer months between July and August 2007, July and128

August 2012, and June and July 2015. The validation data came from May 2013 to July 2015129

and from June to July 2018. The validation RMSE in the GOM was 10.9 µmol·kg−1 for TA,130

11.2 µmol·kg−1 for DIC, 0.038 for pH, and 0.148 for ΩAr. A 2020 paper by Lima et. al opted131

to use a neural network to model the empirical relationships between quantities of interest132

[25]. Like in the McGarry paper, this study also focused on the Gulf of Maine but used133

inputs from a few more sources of data including CTD data (temperature, salinity, depth),134

in-situ measurements of dissolved oxygen, satellite data (chlorophyll, turbidity, sea surface135

height, sea surface temperature), and atmospheric xCO2. The model architecture consisted136

of 2 hidden layers, each with 256 neurons, LeakyRELU activation, batch normalization, and137

a learning rate of 0.01. 100 models were trained to predict DIC and TA, and the median138

standard deviation of the outputs was used as a metric for uncertainty. pH and ΩAr were139

then obtained with CO2SYS from TA and DIC. The best model achieved a test RMSE of140

9.0 µmol·kg−1 for TA and 15.4 µmol·kg−1 for DIC. However, the models performed worse141

when dissolved oxygen measurements and/or satellite data were removed.142

In addition to studies on the modeling of empirical relationships, there also exist studies143

on nutrients and carbonate chemistry which we used to inform choices regarding relationships144

between different variables. Rheuban et al. 2019 studied ocean acidification in Buzzards Bay145

in the Northeast [23], a region that is nearby to the region in our study. The average depth146

of the region of study was 11m, and measurements were used from June 2015 to September147

2017 (year round). They collected measurements of temperature, salinity, TA, and DIC, and148

they used those to predict ΩAr using CO2SYS. They do not report any error metrics as there149

are no data to use as a benchmark, but they quantify the uncertainty with bootstrapping.150

1.3 Framework Overview and Contributions151

We draw from all of these past studies to produce our own framework. In this paper, we152

develop a regional OCA model that leverages machine learning to quickly and inexpensively153

predict 4D (x, y, z, t) indicators of OCA from just surface measurements of temperature154

(T), salinity (S), and chlorophyll-a concentration (Chl). An overview of the framework is155

outlined in Figure 1. First, in Section 3, we interpolate surface measurements of temperature,156

salinity, and chlorophyll-a concentration. These surface measurements (x, y) are obtained157

from satellites and CTD sensors. Next, in Section 4, we train a neural network (NN) to158

predict in-depth temperature and salinity from surface temperature and salinity. We train the159

NN model on a high-resolution historical reanalysis data set obtained from a physics-based160

numerical simulation. As a result, our model inherits knowledge of the physics of the system.161

In Section 5, we use standard regression techniques to develop an empirical model that162

maps temperature, salinity, and surface chlorophyll-a concentration to TA and DIC. Finally,163

in Section 6, we use an existing model of the seawater carbonate system to estimate ΩAr164
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from TA and DIC. In the end, we obtain 4D (x, y, z, t) predictions for temperature, salinity,165

TA, DIC, and ΩAr, and these predictions are made from in-situ and remote sensing surface166

measurements of temperature, salinity, and chlorophyll-a concentration. The framework167

is implemented as a server that makes and serves predictions on new data as it becomes168

available, with results visualized on an online platform. Server code and visualization are169

available at https://github.com/becklabs/aragonite-opendap.170
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Figure 1: Overview of framework. In Section 3, available temperature, salinity, and
chlorophyll-a concentration surface measurements are interpolated to obtain a 2D surface
field. In Section 4, a neural network is trained on reanalysis data to predict 3D temperature
and salinity from 2D temperature and salinity. In Section 5, standard Bayesian regression
models are trained using in-situ observations to predict 3D TA and DIC from temperature,
salinity, and surface chlorophyll. Finally, in Section 6, ΩAr is obtained from TA and DIC
using the CO2SYS software.

Some key differences between our study and these existing studies are that we focus on171

a part of the ocean that is much closer to the coast for our region of interest, and we develop172

a model for a much wider range of years (2017-2023) and for all seasons. Furthermore, the173

whole framework is able to make in-depth predictions for DIC, TA, and ΩAr given only174

surface measurements of temperature, salinity, and chlorophyll-a concentration as opposed175

to other models which use in-depth in-situ measurements which are more expensive to176

collect. Because we use surface measurements, we are able to make predictions at a high177

resolution for a much larger spatial domain rather than just for locations at which in-situ178

samples are collected. In contrast to some of the existing models, our model is based on a179

physics-based numerical model which is why it is able to cover a larger domain of interest180

while remaining very fast. Like other empirical models, the nature of our model also makes181

it easily adaptable when new sensor data become available. Additionally, we use regression182

and machine learning methods that are more suitable for modeling nonlinear relationships,183

and we also use Bayesian methods to estimate uncertainty.184
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We demonstrate the success of our method at one location seen during model training185

(station F22) and one location not seen during model training (station F06) for a wide range186

of depths and years, but the framework can be extended to model the entire region at a high187

resolution. The method can also be replicated in other regions for which a comprehensive188

numerical ocean model exists.189

2 Data190

The strength of our model comes from the fact that we are combining a variety of different191

sources of data. We use high-resolution 4D data obtained from a numerical simulation to192

train a neural network that can predict in-depth temperature and salinity from surface193

measurements. To obtain these surface measurements, we use low-cost and widely available194

satellite data to cover a larger domain of interest. We use a few hundred high-fidelity in-situ195

samples to develop empirical relationships between variables that are easy to measure and196

sought-after quantities that are more expensive to collect. The different data sources are197

summarized in Table 1.198

Table 1: Data sources and variables used in the framework.

Variable FVCOM Satellite In-Situ Measurements (3D)

Temperature 3D field 2D surface field 4413 points

Salinity 3D field N/A 4406 points

Chlorophyll-a N/A 2D surface field N/A

TA N/A N/A 538 points

DIC N/A N/A 538 points

ΩAr N/A N/A 538 points (estimated from TA and DIC)

2.1 Numerical Simulation: Temperature and Salinity199

We use a high-resolution, high-fidelity, physics-informed data set to train a machine200

learning model that can predict temperature and salinity in depth from temperature and201

salinity at the surface. The data set we use comes from the Finite Volume Community202

Ocean Model (FVCOM), a historical reanalysis data set of temperature and salinity in the203

Massachusetts and Cape Code Bays from 2005 to 2013 [27]. More details about the numerical204

simulation can also be found in Champenois and Sapsis [28].205

2.2 Satellite: Temperature and Chlorophyll206

We obtain daily sea surface temperature and surface chlorophyll from Level 3 Aqua-207

MODIS between 2017 and 2023 [29]. The Aqua-MODIS satellite has been measuring visible208

and infrared radiation for the whole Earth every one to two days since 2002. To simplify the209

framework, we only use data from Aqua-MODIS, and we only use daytime measurements (as210

opposed to nighttime) but future work could be done to incorporate data from other satellite211

products such as Terra-MODIS or Sentinel-3 OLCI. The satellite data have been processed212

to translate radiation into temperature and chlorophyll-a concentration. The obtained data213

set is referred to as Level 3 because it it has not yet been interpolated to account for gaps214

due to cloud coverage. We perform this interpolation in Section 3.215

–6–



manuscript submitted to JGR: Biogeosciences

2.3 In-Situ Observations: Temperature, Salinity, TA, DIC216

In addition to the numerical model and satellite measurements, we have access to217

monthly in-situ measurements of physical and biological conditions, and to less frequent218

laboratory determinations of DIC and TA, at multiple depths and sites. These in-situ219

measurements and the collection of water samples for DIC and TA determinations were made220

by the Massachusetts Water Resources Authority (MWRA) and other local organizations221

[11] and by MIT Sea Grant. These data were obtained between February 2017 and November222

2022, with no observations made for the months of December and January during that223

period.224

In-situ measurements of the water column were taken nine times per year at eleven225

stations in Mass Bay and three stations in Cape Cod Bay and Stellwagen National Marine226

Sanctuary (SBNMS) (Libby et al. 2024). At each sampling time, all stations are sampled in227

a day with a CTD system, an inexpensive device that measures conductivity, temperature,228

and depth, and various other sensors (DO, pH, light irradiance, among others). Water229

samples for DIC and TA were collected at F22, F23, N04 and N18 in 2017, and at F22, F06,230

N01 and N07 between 2018 and 2022 (see Figure 2). At these stations, water samples were231

collected using a Rosette equipped with up to twelve 9L Niskin bottles. At each station,232

water samples were collected during the upcast at three depths (1-2m, mid-, and deep-water),233

with duplicates collected at mid-depths in two of the stations. The depth of mid- and234

deep-water samples vary among stations, with the deepest ones taken at 79m in F22. Other235

sites were sampled opportunistically within the geographic area and time frame of this study236

(2017-2022) using a 5L Niskin bottle for the water collection at each depth. These other237

sites include: a) thirty-one stations sampled at the SBMNS within two days in July of 2018238

(n=45 samples: 34 of them collected at 1-2m and 11 collected at 25-26m deep); and, b)239

nine stations within the Boston Harbor, which were sampled in 2017, 2018 and 2019 at a240

maximum depth of 18m (n=98 samples). All water samples were collected in borosilicate241

bottles of 300 mL following best practices [30]. After collection, samples were preserved with242

130 µL of a saturated mercuric chloride solution and were sealed with stoppers using Apiezon243

M grease. Samples were refrigerated until analysis in the lab. Samples were analyzed for DIC244

via coulometry and TA via closed-cell potentiometric Gran Titration with a VINDTA 3C245

(Marianda Corporation). For 2022 samples, the TA was measured by open cell HCl titration246

using a custom system designed and built by the laboratory of Andrew Dickson (University247

of California, San Diego). The instrument is the same type used to certify CRMs for TA [31].248

The in-situ data were obtained from the MWRA Environmental Quality Department249

(ENQUAL). These data were collected from a variety of sources, for a variety of different uses250

and with different standards for accuracy and precision. Data accepted into the ENQUAL251

database are subjected to further in-house quality assurance procedures which are continually252

being refined. As the data were updated or qualified as new errors were found, we contacted253

ENQUAL to ensure that we were using the latest set of data. Measurements made by in-situ254

sensors and determinations made in the lab from water samples were stored in separate255

data sets. To synchronize these data sets we joined them spatiotemporally, on a per day256

basis, using 1e-6, 1e-6, and 3m as matching thresholds for latitude, longitude, and depth257

respectively. With these parameters, no ambiguities were detected in the matches.258

3 Extrapolating Temperature, Salinity, and Chlorophyll Surface Data259

To account for the lack of complete spatial and temporal coverage of the satellite data260

and in-situ surface measurements, we use Gaussian process regression to estimate full 2D261

surface fields [32, 33, 28]. In the case of temperature, the surface measurements can come262

either from satellites or in-situ samples. For chlorophyll-a concentration, we exclusively use263

the satellite data. For salinity, only in-situ measurements are available for the scale and264

region of interest, and they are commonly collected with a CTD.265
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Figure 2: Location of stations for in-situ observations in the region of the study, encompassing
Massachusetts Bay and Stellwagen Bank within the Gulf of Maine.

For satellite data, we use the interpolation method described in Champenois and Sapsis266

to interpolate between gaps caused by cloud coverage [28]. In this method, Gaussian process267

regression is repeatedly performed for each day using data from the previous, current, and268

following day. By only using three days of data at a time, there is no limitation caused by the269

need to invert large matrices. For chlorophyll-a concentration, we use a log transformation to270

reduce skewness, address different scales of variability, and improve uncertainty predictions.271

An example of the extrapolation for temperature is shown in Figure 3.272

For in-situ data, we use Gaussian process regression using all of the available training273

data to interpolate between days and locations at which samples are taken. Like with the274

satellite data, we use a standard squared exponential covariance function (also known as the275

radial basis function). Instead of optimizing the marginal likelihood, we manually set the276

hyperparameters of the covariance function (lengthscale, signal variance, and noise variance)277

to overcome problems caused by highly infrequent sampling.278

4 Deriving In-Depth Temperature and Salinity Fields from Surface Mea-279

surements280

We build on the framework from Champenois and Sapsis to predict both temperature281

and salinity in three dimensions from surface sensor measurements using a neural network282

applied to data from a physics-based model [28]. Temperature and salinity are conservative283

variables, so they are governed by transport laws (passive scalar advection-diffusion) and are284

therefore more suitable for physics-based modeling. We modify the framework by applying285

it to the anomaly data instead of the original data. The anomaly is obtained by subtracting286

the climatology from the original data field, and the climatology is the annual mean over287

the nine years of data. The model is trained on seven years of the FVCOM using the same288

neural network architecture and hyperparameters from Champenois and Sapsis [28].289

4.1 Model Order Reduction with Principal Component Analysis290

First, we compute the climatology and anomaly of the FVCOM data set. Then, we291

apply principal component analysis (PCA) to the FVCOM anomaly data [34, 28]. This292

allows us to represent the vertical structure of temperature and salinity as a function of just293

a temporal mean and two modes with corresponding time coefficients. Results from the294
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Figure 3: Sea Surface Temperature Interpolation from Satellite Data. The left
columns shows unprocessed MODIS data, the center column shows the interpolation obtained
with Gaussian process regression, and the right columns shows the uncertainty associated
with the prediction. Each row shows a different day between June 8-10, 2022.

PCA are shown in Figure 4 where we show the modes, the coefficients, and the percentage295

of variance capture by each mode. The first vertical mode captures inputs from the surface,296

and the second mode captures smaller-scale effects brought about by the mixing layer. We297

only use two modes as these capture more than 95% of the variance.298

4.2 Neural Network Predictions from Surface Measurements299

Next, we train a temporal convolutional neural network (TCN) to predict the time-300

varying coefficients of the PCA modes as a function of surface properties [35, 28]. A TCN is301

a neural network architecture that uses causal convolutions to make predictions from time302

series. We use surface properties as the predictors because they are readily available from303

real-world sensors. As in [35] and [28], we also train a second TCN to predict the standard304

deviation of the variables. The process is very similar to the one described in [28] with the305

exception that we use anomaly data (de-trended) for training.306

Finally, we input the real-time 2D surface estimates into the neural network to obtain307

probabilistic predictions for the coefficients of the PCA modes, and we obtain the full 3D308

prediction by combining the newly predicted PCA coefficients with the PCA modes.309

4.3 Real-World Predictions310

For temperature and salinity, we show the predictions and their corresponding uncertainty311

at multiple depths in Figure 5, and we compare the performance of our model to estimates312

from the FVCOM climatology. At the withheld test location (withheld from the surface313

extrapolation) between 2017 and 2022, we found that our model achieved a root-mean-square314
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Figure 4: Principal Component Analysis. Results of PCA applied to temperature (top)
and salinity (bottom) reanalysis of anomaly data at station F06. The PCA modes (left)
show the shape of the in-depth modes. The PCA mean and coefficients (center) need to
be predicted. The proportion of variance captured by each mode (right) confirms that two
modes are sufficient to represent the data.

error (RMSE) of 1.54◦C for temperature (compared to 1.78◦C for climatology) and 0.35315

for salinity (compared to 0.51 for climatology). These RMSE values for temperature and316

salinity are lower than the RMSE obtained from using the climatology, and our model is317

better for bias elimination.318

5 Bayesian Regression: TA and DIC from Temperature, Salinity, and319

Surface Chlorophyll-a Concentration320

In contrast to temperature and salinity, TA and DIC are non-conservative variables which321

are more difficult to predict with simplified numerical models because they are governed by322

complex transport, chemical, and biological processes. For these variables, we parameterized323

the hidden nonlinear correlations between conservative and non-conservative variables with324

standard regression methods. We use Bayesian regression models to estimate uncertainty.325

We train the regression models with a few hundred in-situ observations made at multiple326

dates, locations, and depths. Given the small number of observations for TA, DIC, and327

thus the estimated ΩAr, we only withheld observations from MWRA station F06 (42◦10’,328

-70◦34’). For these variables, there is no existing 4D benchmark for the region of interest.329

We show the predictions from real-world observations at the withheld station F06 in addition330

to station F22 which is in the training set. Station F22 is the station with the most data331

points, and it is also the deepest.332

For a given region of interest, there is a strong correlation between TA and salinity, so we333

used Bayesian ridge (linear) regression to predict TA from salinity (see Figure 6) [36, 37, 38].334

The resulting regression coefficient and intercept were 57.04 and 349.43, respectively. These335

values were very close to the slope (54.6) and intercept (409) found in [23] for Buzzards Bay336

between 2015 and 2017. They were also in a similar range to the ones found from the model337
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Figure 5: Real-World Temperature and Salinity Predictions. The blue line shows
the climatology, the green line shows the predicted value (shading corresponds to one
standard deviation), and the dark circles show the MWRA sensor measurements. Predicted
values of temperature (left) and salinity (right) are for F06, a station withheld from surface
extrapolations, at three depths in top, middle, and bottom panels.

in [38] for two data sets in George’s Bank and Nantucket Shoals: slope of 52.5 and intercept338

of 497 in 2018 from the East Coast Ocean Acidification survey (ECOA-2) and slope of 55.9339

and intercept of 371 for a historical data set. Our model achieved an overall training RMSE340

of 15.94 µmol·kg−1 and test RMSE of 12.29 µmol·kg−1 which are similar to the best test341

RMSE in the papers by McGarry (10.9 µmol·kg−1) and Lima (9.0 µmol·kg−1). These errors342

are also in the same range as those from a similar linear model for a larger region in [36]343

(∼ 10µmol·kg−1). It is important to note that these relationships are only correct for the344

region of the ocean that is being studied, and new relationships need to be determined for345

other regions of interest [4].346

For DIC, the relationship is not linear, so we use Gaussian process regression to model347

DIC as a function of temperature, salinity, and surface chlorophyll-a concentration. We348

build a new model for each “season” (April to June, July to September, and October to349

March), and each model is shown in Figure 7. A better model could have been obtained350

by using in-depth measurements for chlorophyll-a or oxygen, but we opted to use surface351

chlorophyll-a because it is readily available on a daily basis from satellites. As a result, we352

are able to make predictions for a larger spatial domain and at a higher temporal resolution.353

For this model, we remove outliers in the regressors using the Chauvenet criterion, but we354

keep all data points for DIC regardless of value. Our model achieved an overall train RMSE355

of 19.53 µmol·kg−1 and test RMSE of 33.83 µmol·kg−1 which are slightly higher than the356

best test RMSE in the papers by McGarry (11.2 µmol·kg−1) and Lima (15.4 µmol·kg−1).357

Our RMSE is highest for measurements between July and September which is consistent358

with other studies. The errors listed are computed using the in-situ observations from test359

locations as input as opposed to the predictions made by the neural network.360

The final outputs computed with temperature and salinity inputs from the neural361

network predictions are shown for different depths in Figure 8 and 9. Even when using362
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Figure 7: DIC Model. Models produced by using Gaussian process regression to predict
DIC from temperature, salinity, and surface chlorophyll-a concentration for three seasons.
The surfaces are generated for one set of values of chlorophyll-a concentration.

temperature and salinity from the neural network predictions, the RMSE remain within the363

same range. While the model can make predictions for many depths and seasons, we note364

that the RMSE is higher than the recommended value (10 µmol·kg−1) for “weather” quality365

predictions — predictions that are useful for understanding short-term variations and spatial366

patterns at the scale of weather [19]. Errors were highest near the surface where there is more367

seasonal variability with significant drops in both TA and DIC. These observations can be368

explained by an increase in phytoplankton in the spring, followed by increased calcification369

and thermal stratification during the summer in the study area. Additional analysis is370

required to determine if any of the larger spikes can be explained by other events such as371

heavy rainfall. The DIC predictions are less smooth than the TA predictions due to the input372

from the chlorophyll — the satellite measurements for surface chlorophyll-a concentration373

exhibited high daily variability. The difference in the magnitude of the uncertainty between374

TA and DIC is due to the difference in the choice of the model (Bayesian regression as375

opposed to Gaussian process regression). However, only relative uncertainty is needed to376

make decisions about problems such as optimal sensor placement. Overall, the results suggest377

that more measurements are needed to produce high accuracy models, but the existing378
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model and uncertainty quantification can be used to make decisions about where and when379

to collect samples in the future.
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Figure 8: Real-World TA Predictions. Predicted TA at F06 and F22 for three depths
obtained by passing predicted salinity into Bayesian ridge regression model. Here, the
input salinity is obtained from the neural network predictions as opposed to real-world
measurements.

380

6 Aragonite Saturation State from TA and DIC381

We use the predicted TA and DIC to estimate ΩAr using the Python version of the382

marine carbonate system CO2SYS software, PyCO2SYS [39]. For the CO2SYS parameters,383

we set them in accordance with previous estimations made with the data set. We set384

the pH scale to the one from the National Bureau of Standards (NBS), the carbonic acid385

dissociation equilibrium constants to the ones from Lueker et al. 2000 [40], the bisulfate386

ion dissociation equilibrium constant to the one from Dickson et al. 1990 [41], the boron387

to salinity relationship to the one from Lee et al. 2010 [42], and the hydrogen fluoride388

dissociation equilibrium constant to the one from Dickson and Riley 1979 [43]. We note that389

we use the NBS scale for consistency, but it is less accurate than other options, especially390

when analyzing seawater. We compute the uncertainty of ΩAr by including the uncertainty391

for TA and DIC, found from the respective Bayesian regression models, as input parameters392

for the PyCO2SYS software.393

We plot the distribution of errors in Figure 10, and we see that most points have an394

error near 0. We also observe that our model tends to underestimate ΩAr which is better395

than overestimation. Low values of ΩAr pose a greater risk to marine life and are therefore396

more important to detect. Final estimates of ΩAr at different depths are shown in Figure 11.397

These estimates are made using the TA and DIC predictions from Figures 8 and 9 which are398

in turn made with the predicted temperature and salinity from Figure 5.399

As with TA and DIC, there is higher seasonal variability of ΩAr at the surface. ΩAr peaks400

during the spring and summer which is expected because of productivity from phytoplankton401
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Figure 9: Real-World DIC Predictions. Predicted DIC (total CO2) at F06 and F22 for
three depths obtained by passing predicted temperature, salinity, and surface chlorophyll-a
concentration into the Gaussian process regression model. Here, the input temperature and
salinity are obtained from the neural network predictions, and the surface chlorophyll-a
concentration is obtained from satellite data.
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Figure 10: Error of ΩAr Predictions. Distribution of error of ΩAr predictions. Our model
tends to slightly underestimate ΩAr which is of lower consequence than overestimation.

blooms and warmer water [44]. Given the importance of being able to determine drops in402

ΩAr, more measurements are needed during winter months and months with no data to fully403

assess the quality of the model. For example, the model predicted a significant drop in ΩAr404

between May and June of 2019, but the lack of measurements during that time period makes405

it difficult to validate this prediction.406

7 Conclusion407

We developed a machine learning framework to predict coastal seawater temperature,408

salinity, total alkalinity (TA), dissolved inorganic carbon (DIC), and carbonate saturation409

state (ΩAr) in 4D (latitude, longitude, depth and time), with reasonable accuracy and in410

real time using only surface measurements of temperature, salinity, and chlorophyll. The411
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Figure 11: Real-World ΩAr Predictions. Predicted ΩAr at F06 and F22 for three depths
obtained by passing predicted TA and DIC into CO2SYS software. Here, the input TA
and DIC are obtained from the regression model predictions. The black line at ΩAr = 1
represents the threshold at which organisms with shells are most affected.

ability to model these properties given limited sensing capabilities is crucial to monitor the412

effects of climate change and the evolution of ocean and coastal acidification (OCA). We413

applied the framework to the Massachusetts Bay and Stellwagen Bank in the US Northeast414

Coast, and we found that the framework is superior in speed and resolution to other existing415

regional predictors. Furthermore, the framework provides an estimate for uncertainty which416

can be used for decision making related to many important tasks including ecosystem and417

resource management, identification of priority areas for mitigation, sensor selection, and418

optimal sampling.419

8 Open Research420

The temperature and chlorophyll satellite data are from Level 3 NASA Aqua-MODIS421

at https://oceancolor.gsfc.nasa.gov/l3/ [29]. The Massachusetts Water Resources Authority422

(MWRA) measurements were collected from a few different sources including MWRA,423

MIT Sea Grant, and Battelle, and the data were processed by the MWRA Environmental424

Quality Department (ENQUAL). More details can be found at https://www.mwra.com/our-425

environment/water-quality-reports and the full data set is available at https://github.com/426

becklabs/aragonite-opendap. The Finite Volume Community Ocean Model (FVCOM) used427

in the paper is produced for the Northeast Coastal Ocean Forecast System (NECOFS) from428

the Delaware Shelf to the eastern end of the Scotian Shelf. More details can be found at429

http://fvcom.smast.umassd.edu/necofs/. The temporal convolutional network was built with430

Tensorflow, the Gaussian process regression was implemented with GPy, and the Bayesian431

ridge regression was implemented with scikit-learn.432
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