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Abstract
Despite advances in high performance computing, accurate numerical simulations of global
atmospheric dynamics remain a challenge. The resolution required to fully resolve the
vast range scales as well as the strong coupling with – often not fully-understood – physics
renders such simulations computationally infeasible over time horizons relevant for long-
term climate risk assessment. While data-driven parameterizations have shown some promise
of alleviating these obstacles, the scarcity of high-quality training data and their lack of
long-term stability typically hinders their ability to capture the risk of rare extreme events.
In this work we present a general strategy for training variational (probabilistic) neu-
ral network (NN) models to non-intrusively correct under-resolved long-time simulations
of turbulent climate systems. The approach is based on the paradigm introduced by Barthel Sorensen
et al. (2024) which involves training a post-processing correction operator on under-resolved
simulations nudged towards a high-fidelity reference. Our variational framework enables
us to learn the dynamics of the underlying system from very little training data and thus
drastically improve the extrapolation capabilities of the previous deterministic state-of-
the art – even when the statistics of that training data are far from converged. We in-
vestigate and compare three recently introduced variational network architectures and
illustrate the benefits of our approach on an anisotropic quasi-geostrophic flow. For this
prototype model our approach is abe to not only accurately capture global statistics, but
also the anistropic regional variation and the statistics of multiple extreme event met-
rics – demonstrating significant improvement over previously introduced deterministic
architectures.

Plain Language Summary

We present a probabilistic framework to build and train machine learned (ML) cor-
rection operators to improve the predicted statistics of low-resolution climate simulations.
The proposed methodology is specifically focused on enabling long-time climate predic-
tions using operators trained on short-time data. We illustrate our approach, which acts
on existing data in a post-processing manner, on a prototype climate model, for which
we are able to accurately quantify the regionally varying statistics as well as rare-event
statistics over the previous state-of-the-art. The simple model we consider here allows
us to demonstrate our method on very long simulation, but our method can be readily
applied to output from full-complexity climate models.

–2–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

1 Introduction

As the Earth’s climate changes, we are faced with deep uncertainty about extreme
weather events whose frequency and magnitude are expected to increase (Lehmann et
al., 2015; Meehl & Tebaldi, 2004; Perkins-Kirkpatrick & Lewis, 2020). Due to their po-
tential for catastrophic consequences, it is crucial to accurately quantify their long-term
risk and assess their impact on communities (Fischer et al., 2021; Raymond et al., 2020;
Robinson et al., 2021). In this context, “extreme events” are generally defined as high
amplitude anomalies of high-impact variables, such as near-surface temperature and pre-
cipitation (Lucarini et al., 2016; Sapsis, 2021), to which human activities are highly sen-
sitive. For instance, heatwaves can have devastating effects on an unprepared popula-
tion, particularly when compounded with other events such as low rainfall (Bevacqua
et al., 2023; Raymond et al., 2020; Robinson et al., 2021; Zscheischler et al., 2018).

From a statistical point of view, certain observables being susceptible to extreme
events implies that their probability density functions (pdfs) have “heavy tails”, i.e. they
decay slowly and high amplitude events retain small but non-negligible probability. Ac-
curately quantifying the risk of such events is subject to two main requirements: first,
high-fidelity simulations that can capture the dynamics of interest, which require a high-
resolution mesh in space and time; and second, sufficiently large samples to capture rare
events in the tail of the distribution. The latter can be obtained either through long-term
simulations or through large simulation ensembles (Deser et al., 2012). However, due to
the high-dimensional, chaotic, and multi-scale nature of Earth’s atmosphere, large en-
sembles of high-resolution simulations are computationally intractable over multi-decade
or multi-century time horizons. As an example, the highest resolution climate models
currently proposed fall short of fully resolving all the spatial scales of atmospheric tur-
bulence by a factor of 1017 degrees of freedom (Schneider et al., 2023). These shortfalls
are further compounded by the need to simulate centuries-long trajectories for climate
risk assessment.

Alternative surrogate machine learning (ML) techniques are becoming increasingly
attractive as a computationally efficient way to simulate the Earth’s atmosphere (Pathak
et al., 2022a). Alas, purely data-driven models present their own set of challenges. In
contrast to dynamical models, they are often unstable when run over long time-horizons,
and they struggle to extrapolate beyond the distribution defined by the scarce training
data. This becomes problematic as we seek to quantify climate risks over the coming cen-
turies with only several decades of observational data available for training. Although
methodologies have been proposed to circumvent these issues by exploiting properties
of the underlying dynamical system (Kochkov et al., 2023; Mathews et al., 2021), most
of them require an explicit notion of ergodicity (Z. Li, Liu-Schiaffini, et al., 2022; Jiang
et al., 2023; Platt et al., 2023; Schiff et al., 2024), or scale poorly as the state dimension
increases (Pathak et al., 2017; Bollt, 2021; Hara & Kokubu, 2022), posing challenges for
their use in climate-related applications.

These limitations have spurred a complementary line of research in which hybrid
strategies are explored (Schneider, Lan, et al., 2017; Schneider et al., 2023; Eyring et al.,
2024; Lam et al., 2022; Bi et al., 2023; Kochkov et al., 2023). Such methods seek to in-
herit the desirable properties of both numerical and ML models, while attenuating their
drawbacks. A group of methods in this category focuses on correcting the dynamics on-
the-fly by intrusively modifying classical numerical models (Arcomano et al., 2022; Clark
et al., 2022; Sanderse et al., 2024; Boral et al., 2023). The underlying dynamical model
provides a strong inductive bias, which reduces the training data requirements compared
to purely-data driven models, and helps capture many of the dynamical properties of the
system (Kochkov et al., 2021; Dresdner et al., 2022). In the context of climate model-
ing, recent approaches seek to learn state-dependent closure terms for the effect of the
unresolved sub-grid-scale processes on the resolved scales. Such approaches have been
shown to be effective in both reducing overall bias (Watt-Meyer et al., 2021; Guillaumin
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& Zanna, 2021) as well as capturing unresolved processes (Arcomano et al., 2023). Fur-
thermore, they have been demonstrated on a range of systems ranging from idealized aqua-
planet configurations (Yuval & O’Gorman, 2020; Rasp et al., 2018; Brenowitz & Brether-
ton, 2019; Yuval et al., 2021; Iglesias-Suarez et al., 2024) to more realistic global climate
models (Bora et al., 2023; Bretherton et al., 2022).

However, these intrusive ML corrections have several drawbacks. Their implemen-
tation requires integration into the original dynamical model, which can be a complex
process (J. McGibbon et al., 2021). Furthermore, these closure terms are typically learned
offline, without interaction with the dynamical system, since very few dynamical mod-
els meet the fast differentiation requirements for integrated online learning (Kochkov et
al., 2023). In addition, although advances have been made in stabilizing such hybrid mod-
els, long-term instability can still be an issue (H. Zhang et al., 2021; Wikner et al., 2022;
Yuval et al., 2021). Gradient-free ensemble Kalman methods have recently been proposed
that enable online learning in hybrid systems (Lopez-Gomez et al., 2022; Christopou-
los et al., 2024). These methods can learn from long-term statistics to guarantee stabil-
ity, but their application is limited to relatively sparse ML corrections.

Another group of hybrid methods focuses on machine learning non-intrusive cor-
rections, meant to be applied as a post-processing step. Since there is no interaction with
the numerical solver, these methods are long-term stable by design. Post-processing meth-
ods apply a machine learned map to biased trajectories of the dynamical system such
that the statistics of the output match those of the training data. The need to train on
statistics rather than trajectories is necessitated by the chaotic nature of the underly-
ing system and the absence of paired (or aligned) data available for training. Such tech-
niques have been applied to coarse resolution weather and climate simulations in the con-
text of statistical debiasing (Blanchard et al., 2022; J. J. McGibbon et al., 2023; L. Li
et al., 2024) and downscaling (Vandal et al., 2017; Wan, Baptista, Chen, et al., 2023; Wilby
et al., 1998). In the context of debiasing, multiple methods have been explored in the
literature including generative models based on optimal transport theory (Arbabi & Sap-
sis, 2022), temporal-convolutional-network (TCN) and LSTM networks (Blanchard et
al., 2022), generative adversarial networks (GAN) (J. J. McGibbon et al., 2023), unsu-
pervised image-to-image networks (UNIT) (Fulton et al., 2023), and diffusion models (L. Li
et al., 2024). However, the requirement to reproduce the statistics of the training data
greatly limits the potential of such methods to generalize to longer trajectories than those
observed in training.

To tackle such limitation, we propose post-processing methodology to debias coarse-
resolution climate simulations that is able to correct statistics of rare extreme events even
when these have return periods far longer than the period spanned by the training dataset.
Our proposed methodology seeks to extend the application of trajectory-based post-processing
methods to long-time simulations through the use of probabilistic neural network mod-
els trained on specific paired sets of training data. Specifically, our framework leverages
a recently developed methodology to generate paired climate trajectories (Barthel Sorensen
et al., 2024; S. Zhang et al., 2024) that avoids common pitfalls of training ML algorithms
for chaotic systems. These paired trajectories are then used to learn a probabilistic post-
processing operator using variational inference methods.

Variational inference methods seek to approximate a distribution using its samples
by solving an optimization problem where the distribution itself is parameterized by a
neural network. In this case, we leverage Variational Auto-Encoders (VAEs) (Kingma
& Welling, 2022) coupled with Long-Short-Term-Memory based recurrent neural net-
work (RNN) architectures (Hochreiter & Schmidhuber, 1997) and ensemble learning (Opitz
& Maclin, 1999). VAEs compress the system’s state into a probabilistic latent represen-
tation whose distribution is learned variationally. RNNs map one trajectory to another
by processing snapshots sequentially using a latent representation of the current and pre-
vious states. By replacing the latent representation in RNNs by a probabilistic one learned
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variationally one obtains a map from a trajectory to a distributions of plausible trajec-
tories. Furthermore, we train a small ensemble of such networks using the same data and
different random seeds. Thus, the final algorithm defines a map from a trajectory to a
composite distribution of trajectories, which captures the uncertainty of the system more
accurately, in contrast to deterministic models that tend to learn the expectation.

Our variational extension greatly increases the generalization and extrapolation ca-
pabilities of deterministic models used in previous work (Barthel Sorensen et al., 2024).
This allows us to accurately predict the probability of tail-risk events with longer return
periods than the training period, and which are therefore likely to be missing entirely
from the training data. Furthermore, we illustrate the advantages of our framework on
a range of metrics not previously considered, including two-point correlations, regional
variation, and extreme event statistics. We also conduct a systematic comparison of sev-
eral variational architectures to serve as a guide to researchers looking to implement our
framework. In summary, our approach bypasses the three main difficulties encountered
by many ML-based surrogates for chaotic systems, namely: long time inference stabil-
ity, generalizability, and training stability. Our approach is stable for indefinitely long
time horizons by construction, sample efficient, easy to implement, and empirically able
to extrapolate statistically relevant properties. In this work we apply our methodology
on an anisotropic 2D quasi-geostrophic flow, which, albeit simple, captures many of the
core difficulties of models with more complex physics. Crucially, it can be simulated over
very long time horizons at reasonable computational cost. This last property allows us
to study the behavior of very long trajectories, which is infeasible with the time-horizon
of current climate datasets.

The remainder of this article is organized as follows. In §2 we outline the math-
ematical formulation of problem under investigation and in §3 we introduce the specific
prototypical climate model to be analyzed. §4 summarizes the specific machine learn-
ing architectures we employ, and our results are presented in §5. We conclude with a dis-
cussion of the implications of our results in §6.
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2 Mathematical Framework

We consider a discretized representation of an ergodic chaotic dynamical system

∂tq = F (q), q ∈ RN , (1)

with initial conditions q0 following a pre-defined distribution µ0, which in turn induces
a distribution of trajectories. Here we loosely define a chaotic system as one whose tra-
jectories are highly sensitive to perturbations of initial conditions. Specifically, chaotic
systems are characterized by having a positive Lyapunov exponent: small discrepancies
in the initial conditions are exaggerated exponentially over time (Strogatz, 2018). In defin-
ing the system (1) we assume N is large enough that the statistics of the solution q do
not change with increasing N – we refer to such a system as being “fully-resolved”. Cor-
respondingly, we also consider an “under-resolved” discretization of the same dynam-
ical system, described by

∂tv = f(v), v ∈ Rn, (2)

where n < N , and, crucially, the statistics of v depend on n. Finally, we define the pro-
jection of the fully-resolved solution onto the coarse grid via the projection operator P

u = Pq, u ∈ Rn. (3)

Moving forward, u will be referred to as the reference data (RD) and v will be referred
to as the coarse data (CR). We also consider the discretization in time of the solutions
of (1) and (2) to snapshots sampled equi-spaced in time, resulting in the sequences {vj}Tj=1

and {uj}Tj=1, where uj = Pqj .

The objective of this work is to learn a parametric correction operator

Gθ : Rn×T → P(Rn×T ), (4)

where T is the length of the trajectories, P(Rn×T ) is the push-forward map by P of a
distribution of trajectories of system (1), and θ are the parameters of the map. Thus,
Gθ maps trajectories from the distribution of the under-resolved (coarse) system (2) to
distributions of trajectories of the projected fully-resolved (reference) system (1). We are
focused on the statistical evaluation of long term climate risks, and thus the aim of (4)
is not to approximate any specific reference trajectory on a snapshot-by-snapshot ba-
sis, but rather to generate plausible trajectories which reflect the statistics of the refer-
ence data.

We highlight that the operator Gθ maps trajectories from n-dimensional state space
to n-dimensional state space, and is not intended to recover the fine scales unresolved
by the coarse model. Therefore, all results presented in this work should be understood
as being defined on the coarse grid.

2.1 Training on Nudged Simulations

The primary obstacle to learning a map Gθ is that the systems associated to v and
u are chaotic, and therefore there is no natural pairing between trajectories (Wan, Bap-
tista, Boral, et al., 2023). One could learn a map between any arbitrary pair of trajec-
tories, but such map will be highly specific to that particular ordering, and in general
will not generalize to unseen data. In addition, for the sake of generalization the map-
ping must directly encode the spatiotemporal dynamics of the system (1), not just the
statistics of the specific trajectories used in training. This additional constraint stems
from the downstream application: practical long-term (multi-century) climate forecast-
ing will require training correction operators on the few decades of available high qual-
ity data whose statistics are not converged – especially for rare events whose character-
istic return period is on the order of centuries. If Gθ is trained to simply generate tra-
jectories drawn from the distribution defined by the training data such extrapolation is
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often impossible without additional strong inductive biases, which themselves are usu-
ally not well defined.

To overcome these challenges, we employ the framework introduced by Barthel Sorensen
et al. (2024) in which the correction operator is trained on trajectory pairs consisting
of a fully-resolved reference trajectory and an under-resolved trajectory nudged towards
that reference trajectory. We briefly summarize the mathematical rationale of the ap-
proach below, and refer the interested reader to Barthel Sorensen et al. (2024) for a more
detailed presentation.

Consider the deviation between the under- and fully- resolved representations of
the dynamical system

δ ≡ v − u, δ ∈ Rn, (5)

which is governed by the system

∂tδ = f(δ +Pq)−PF (q). (6)

Due to the chaotic nature of the system, δ will grow exponentially. This is known as chaotic
divergence and makes a map between any two arbitrary realizations of v and u mean-
ingless. This divergence can be constrained through the introduction of a small damp-
ing term on the right hand side of (5) resulting in

∂tδτ = f(δτ +Pq)−PF (q)− 1

τ
δτ , (7)

which when expressed in terms of the original variables takes the form

∂tvτ = f(vτ )−
1

τ
(vτ − u), vτ ∈ Rn. (8)

If the reference solution u is known, the system (8) is said to be nudged towards u – an
approach which originates in the field of data assimilation, where it has been used to im-
prove the predictive capabilities of weather models (Huang et al., 2021; Miguez-Macho
et al., 2005; Storch et al., 2000; Sun et al., 2019) . The forcing term on the right hand
side of (8) is known as the nudging tendency, and the user-defined constant τ represents
a time scale over which this forcing acts. The nudging tendency will have a negligible
effect when (vτ −u) is small and an O(1) effect on the dynamics only when the devi-
ation (vτ − u) grows to be O(τ). Through a multiscale analysis, Barthel Sorensen et
al. (2024) showed that nudging is equivalent to forcing the dynamics evolving on time
scales slower than τ to follow the slow dynamics of the reference trajectory u, while the
faster dynamics are free to evolve according to the unforced coarse dynamics (2).

Training on the pair of trajectories vτ and u allows the correction operator Gθ to
learn the fast dynamics of the fully-resolved system which are most affected by the lack
of resolution, while being minimally corrupted by the chaotic divergence of the large-scale
slow dynamics. The aim therein is to learn a map which reliably maps trajectories in the
distribution induced by the coarse dynamics (2) to the distribution induced by the ref-
erence (fully-resolved) dynamics (1). However, the inclusion of the nudging tendency in
(8) introduces artificial dissipation, which causes the spectrum of the nudged solution
vτ to differ from that of the free running solution v. To address this, we define the spec-
trally corrected nudged solution

v′
τ = F−1[akv̂τ,k], (9)

where v̂ ≡ F [v] is the spatial Fourier transform and ak is the spectral ratio defined as

ak ≡

√√√√∫ T

0

|v̂k|2dt

(∫ T

0

|v̂τ,k|2dt

)−1

. (10)
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Figure 1: Diagram of the nudging-based machine learning framework.

We note that several other strategies to address such spectral inconsistencies have been
proposed such as 4DVar (Dimet & Talagrand, 1986; Mons et al., 2016; Wang et al., 2019)
or ensemble variational methods (Liu et al., 2008; Mons et al., 2016; Buchta & Zaki, 2021).
We utilize the simple spectral correction due to its ease of implementation and the fact
that it does not require iterative simulation of the governing equations as some of these
other methods. In practice the training data consists of 3 trajectories, the reference data
u, the spectrally-corrected nudged coarse data v′

τ , and a free running coarse trajectory
v used for the spectral correction (9). We then formulate the general supervised learn-
ing problem

min
θ

∫ T

0

∥Gθ[v
′
τ ]− u∥2 dt, (11)

where v′
τ and u are understood to be discrete trajectories. By formulating the learning

in terms of trajectories – and not just statistics – the learned map directly encodes the
temporal dynamics of the system. This allows for the possibility of the learned map to
extrapolate to trajectories which are much longer than the training data which would
be impossible if Gθ was trained only to reproduce the statistics of the data seen in train-
ing (Blanchard et al., 2022). A diagram of the general learning framework is shown in
Figure 1.
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3 Quasi-Geostrophic Model

Similarly to (Barthel Sorensen et al., 2024), we consider a two-layer quasi geostrophic
model as prototypical climate model. The model is defined on 2D Cartesian grid, (x, y) ∈
[0, 2π]2, and takes the form

∂qj
∂t

+
(
Uj + k̂×∇ψj

)
· ∇qj +

(
β + k2dUj

) ∂ψj

∂x
= −δ2,jr∇2ψj − ν∇8qj , (12)

where j = 1, 2 corresponds to the upper and lower layers. The dependent variable ap-
pears in two forms: qj(x, y, t) and ψj(x, y, t), which are the potential vorticity and stream
function respectively. Without loss of generality, all results in this work will be presented
in the form of the stream functions ψj .

The system is parameterized by the bottom-drag coefficient r, the beta-plane ap-
proximation parameter β, and the deformation frequency k2d. In this work we fix [r, β, k2d] =
[0.1, 2.0, 4.0] – values consistent with mid-latitude atmospheric flow. The imposed zonal
mean flow is given by Uj = −1(j+1)U , with U = 0.2.

To quantify the effectiveness of our methodology to anisotropic problems we intro-
duce topography on the bottom surface. The topography profile hb(x, y) is introduced
through the definition of the potential vorticity

qj = ∇2ψj +
k2d
2

(ψ3−j − ψj) +
f0
h2
hb(x, y)δj,2. (13)

Here f0 is the inertial frequency which we set to 1, h2 is the thickness of the lower layer,
and δj,2, indicates that the topography term is only included in the definition of the lower
layer potential vorticity q2. We consider a topography profile consisting of seven randomly
spaced Gaussians with equal variance

hb(x, y) = A

7∑
j=1

e−
(x−aj)

2+(y−bj)
2

σ2 , (14)

where the coordinates [aj , bj ] and variance σ2 represent the centers and width of the Gaus-
sian “mountains”. The specific values were chosen to ensure that the profile would not
violate the periodic boundary conditions. An illustration of the topography profile is shown
in Figure 2c.

Equations (12) and (13) are solved using a spectral method in space and then in-
tegrated using a 4th order Runge-Kutta scheme in time. We consider 128×128 and 24×
24 grid to represent the specific fully- and under- resolved systems (1) and (2), respec-
tively. For each case, we run a single simulation for 35,000 time units, the first 1,000 time
units are used for training, and the remaining 34,000 are used for testing. One additional
nudged simulation over 1000 time units is performed to generate the training data (9)
needed to construct the supervised learning problem (11).

Figure 2a shows the zonally averaged flow field as an illustrative example. Note the
difference in amplitude between the RD and CR solutions. Figure 2b shows the spatial
variation of the normalized variance of the stream function data defined as

σ̃(x, y) =
σ(x, y)− σ

σ
, (15)

where the variance is computed over the temporal dimension (34,000 time units) and σ
denotes a spatial average. This highlights both the anisotropy present in the flow as well
as the non-trivial differences in the spatiotemporal features of the RD and CR data sets.
Finally, we reemphasize that the RD dataset represents the high resolution solution pro-
jected onto the coarse grid, and thus all data and results shown in this work are defined
on the coarse 24× 24 grid.
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(a)

(b) (c)

Figure 2: Zonal average (a) and normalized covariance (b) of the lower layer stream func-
tion ψ2 of the RD and CR data sets. Illustration of the bottom topography profile (c).
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4 Machine Learning Architecture

Here we provide a brief description of the neural network architectures and uncer-
tainty quantification strategies investigated in this work. We reemphasise that the aim
of the current approach is to train correction operators which are effective when applied
to unseen trajectories which are significantly (perhaps orders of magnitude) longer than
the training trajectories. To this end, we investigate three probabilistic extensions of the
previously validated Long Short Term Memory (LSTM)-based network (Barthel Sorensen
et al., 2024), all based on the principle of VAEs (Kingma & Welling, 2022). To illustrate
the number of possible, and often subtle, interactions between the VAE and LSTM we
begin with a brief outline of a basic RNN and then explain how each of the three archi-
tectures under investigation builds upon this baseline. At a high level, the VAE intro-
duces a probabilistic latent space which in theory allows the network to learn embed-
dings of the limited training data in a manner which is cognizant of and robust to the
limitations of that data. The primary variation we investigate here is whether this la-
tent space is implemented “upstream” or “downstream” of the LSTM unit in the com-
putational graph of the network as a whole. Much of the discussion in §5 and §6 focuses
on the advantages and disadvantages of each and how these may be exploited or mit-
igated respectively.

4.1 Recurrent Neural Networks

One of the most widely used class of ML architectures for modeling temporal se-
quences such as the climate systems which motivate our research is the RNN (Graves
et al., 2007; Sutskever et al., 2008; Graves et al., 2013; Graves, 2014; Sutskever et al.,
2014; Cho, van Merrienboer, Gulcehre, et al., 2014). An RNN layer transforms the in-
put sequence x = [x1, ...,xT ],xt ∈ Rn into an output y = [y1, ...,yT ],yt ∈ Rm, via a
hidden state h = [h1, ...,hT ],ht ∈ Rd according to the following recursive push-forward
equations

ht = fh (Uxt +Wht−1 + b) , (16)

yt = fo (Vht + c) , (17)

where U,W,V,b, c represent the trainable parameters, and both fh and fo are the gen-
erally nonlinear activation functions. A graphical representation of the basic RNN unit
is given in Figure 3a. This basic formulation is generally augmented using gating mech-
anisms which alleviate the problem of vanishing gradients (Pascanu et al., 2013) during
training which arise due to exponentially small weights assigned to long term dependen-
cies. Specifically, all of the network architectures explored in this work are built on LSTM
unit (Hochreiter & Schmidhuber, 1997), as LSTM based architectures have generally demon-
strated superior ability to capture long time dependencies as compared to other designs
such as the Gated Recurrent Unit (GRU) (Cho, van Merrienboer, Bahdanau, & Bengio,
2014).

4.2 Variational Auto Encoder

The ML correction operator will generally encounter many events which were rarely
or not at all seen in training. One architecture that has been proposed to enable such
generalization (for non-sequential data) is the Variational Auto-Encoder (VAE) (Kingma
& Welling, 2022). A standard Auto-Encoder (AE) is a type of data compression archi-
tecture which projects the input data x onto a reduced order latent space z and then
expands it back to an approximation of the original input data x̃. The AE is then gen-
erally trained to minimize the reconstruction error: ∥x−x̃∥. The VAE replaces the de-
terministic latent space in the standard AE with a probabilistic latent space, where for
each forward pass the latent space representation is sampled from a distribution, which
for ease of parameterization, is generally assumed to be Gaussian z ∼ N (µz,σz). From
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an implementation point of view, this implies that each embedding is now not just a sin-
gle number but a mean and a variance. This extension to a latent space of distributions
regularizes or smooths out the latent space ensuring that that structures which are sim-
ilar in physical space will have similar embeddings – a property which is not guaranteed
in a deterministic encoder-decoder network. This built in uncertainty improves the ex-
trapolation capabilities of the network by increasing the likelihood that never-before-seen
structures will be encoded into latent space representations which are similar to the em-
bedding of similar structures which were seen in training, and thereby increasing the like-
lihood of an accurate decoding.

However, for this framework to be useful some regularization constraints are required
on the latent space distribution. For example, without constraints, the network is liable
to over-fit to the training data and converge to a latent space whose mean values are dis-
tant from one another and whose covariances vanish thereby negating the benefit of the
probabilistic framework entirely. This regularization is achieved through an addition to
the loss function which penalizes deviations of the distribution p(z) ∼ N (µz,σz) from
a standard Normal distribution: N (0, I). We note that while other priors are possible,
these were not pursued in this work.

4.3 Probabilistic Recurrent Neural Networks

The probabilistic treatment of sequential temporal data requires the combination
of the RNN and VAE frameworks. Such hybrid architectures are also known as Deep State
Space Models (DSSMs) (Gedon et al., 2021), however to minimize unnecessary jargon
we will refer to such models simply as probabilistic (as opposed to deterministic) RNNs.

Here we investigate three recently proposed probabilistic RNN architectures: the
VAE-RNN (Fraccaro et al., 2016; Fraccaro, 2018), the stochastic RNN (STORN) (Bayer
& Osendorfer, 2015), and the variational RNN (VRNN) (Chung et al., 2016).

4.3.1 VAE-RNN

The VAE-RNN is the simplest form of probabilistic RNN. In this case a VAE is
simply appended to the output of the RNN at each time step independently – this is il-
lustrated graphically in figure 3b. The recursive push-forward equations for the VAE-
RNN are

ht = fh (Uxt +Wht−1 + b) , (18)

zt ∼ N (µz(ht),σz(ht)) , (19)

yt = fo (Vzt + c) , (20)

where µ2
z(ht) = Bht and σz(ht) = softplus (Cht) are both themselves parameterized

through the trainable weight matrices A and B and the use of the softplus activation
function ensures a positive variance. A critical (and limiting) feature of the VAE-RNN
architecture is that the latent space dependency is downstream of the recurrence rela-
tionship and thus there is no communication between time steps zt. The following two
architectures remedy this limitation.

4.3.2 STORN

The STORN architecture does not append a VAE to the output of the RNN but
instead introduces the latent space upstream of the recurrence relationship, namely as
an additional input to the RNN. Specifically, it consists of the following push forward
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equations

zt ∼ N (µz(xt),σz(xt)) , (21)

ht = fh (Uxt +Wht−1 +Azt + b) , (22)

yt = fo (Vht + c) , (23)

where the latent space is parameterized in terms of the input variable µ2
z(xt) = Bxt

and σz(xt) = softplus (Cxt). A graphical illustration of the basic STORN architecture
is given in figure 3c.

4.3.3 VRNN

The VRNN architecture includes both an upstream and downstream latent space
dependency, and can be interpreted as a combination of the VAE-RNN and STORN ar-
chitectures. The latent space is introduced as an input to the RNN but is also appended
to its output. The generative equations are

zt ∼ N (µz(xt),σz(xt)) (24)

ht = fh (Uxt +Wht−1 +Azt + b) (25)

yt = fo (V1ht +V2zt + c) (26)

where the latent space is parameterized as in the STORN model. Chung et al. (2016)
investigate both a standard Gaussian prior (VRNN-I) as well as a generally time depen-
dent prior which is learned during the training phase. Here we consider only the VRNN-
I variant, which for simplicity we refer to as VRNN. In practice, these two architectures
generally demonstrate similar levels of performance (Chung et al., 2016; Gedon et al.,
2021).

4.4 Ensemble Analysis

The probabilistic architectures described above help to address the uncertainty due
to limited training data. However, there is also uncertainty due to the random nature
of the optimization algorithm used to train the network and the highly non-convex na-
ture of the optimization landscape. To leverage this uncertainty we employ an ensem-
ble approach in which we train the same architecture multiple times on the same train-
ing data. This results in an ensemble of NN’s: Gθj and therefore an ensemble of predic-
tions ûj = Gθj [v], j = 1...Ne where Ne is the number of ensemble members. We then
define the prediction of any statistic or observable g(u) as the average prediction of the
ensemble members

ḡ =
1

Ne

Ne∑
j=1

g(Gθj [v]). (27)

The uncertainty is then quantified through the ensemble variance

σ2
g =

1

Ne − 1

Ne∑
j=1

(
g(Gθj [v])− ḡ

)2
. (28)

We note that due to their probabilistic nature, each forward evaluation (on the same in-
put) of the VAE-RNN, STORN, and VRNN architectures leads to slightly different out-
puts. However, we have found that the variance in the long time statistics of these vari-
able predictions is negligible. In fact, the variance quantified by (28) is dominated by
the ensemble variance, and is not meaningfully affected by the probabilistic nature of
the architectures. This is both expected and desirable, as even if each forward pass of
the model produces a different realization, we expect each of these to be drawn from the
same distribution and thus to share common long time statistics.
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Model Trainable Parameters DKL L1

RNN 168,492 0.0239 3.68
VAE-RNN 175,812 0.0026 4.35
STORN 190,212 0.0089 2.46
VRNN 259,332 0.0044 2.47

Table 1: Number of trainable parameters (degrees of freedom) and global prediction errors
for each network architecture considered in this work.

In A1 we present a detailed parametric study on the effects of ensemble size and
training duration for each of the four architectures described above. In general, for all
architectures the effect of considering an ensemble as opposed to a single network is small
but meaningful. For clarity of exposition, we focus the remainder of our discussion on
results computed from an ensemble of 6 neural networks each of which is trained for 500
epochs. We found that in general increasing the ensemble size further increased the com-
putational cost substantially while leading to only marginal improvements. All follow-
ing results – for all architectures – are the ensemble mean prediction as quantified by
(27).

4.5 Network Architecture and Training Details

The correction operator used in this work are based on the LSTM-based architec-
ture already validated by Barthel Sorensen et al. (2024) on the isotropic version of the
QG model i.e. without topography. This architecture consists of a single layer encoder
which compresses the input to a hidden state of dimension 60, followed by an LSTM layer
of the same size, and a single layer decoder that restores the output to the original size.
For the probabilistic models the latent space dimension was also set to 60.

As our main aim in this paper is to exhibit the advantages of the probabilistic meth-
ods, we have left the encoder, decoder, and LSTM layers of the networks as unaltered
as possible. With the exception of the VRNN architecture, the inclusion of the latent
space does not meaningfully impact the number of trainable parameters which are sum-
marized in table 1. The increase in degrees of freedom for the VRNN architecture is due
to the increased size of the input to the decoder layer (26). However, we found that nei-
ther increasing the depth or width of the encoder and decoder layers, nor varying the
dimension of the latent space had any significant impact on the results. Therefore, we
expect that any differences in performance are not simply due to an increase in the de-
grees of freedom.

The loss function used to train the correction operators consists of three terms: a
mean squared prediction error, a term that penalizes deviations in the conservation of
a mass in the QG model, and the KL divergence term regularizing the latent space dis-
tribution – the latter being only present for the probabilistic architectures. The over-
all expression for the loss is given by

L(θ) =

∫ T

0

∥Gθ[v
′
τ ]− u∥2 dt+

∫ T

0

∥Gθ[v
′
τ ]∥ dt+ λDKL (N (µz(θ),σz(θ)) ,N (0, I)) (29)

The normalization constant λ sets the strength of the regularization on the probabilis-
tic latent space: if it is too large, the model will ignore the prediction error and drive
the latent space to pure white noise, and if it is too small, the model will over fit to the
data and the latent space will have no effect. Empirically, we found that for our prob-
lem a value of 10−4 led to the best results.
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Figure 3: Graphical model and recursive evaluation equations for the four network archi-
tectures considered in this work: basic RNN (a), VAE-RNN (b), STORN (c), VRNN (d).
Latent space dependencies upstream and downstream of the recurrent layer are marked
red and green respectively.
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5 Results

Here we showcase the results of our machine learning framework, as introduced in
§2 using the network architectures described in §4, applied to the quasi-geostrophic sys-
tem described in §3. All the results herein represent the ensemble mean prediction (27)
of six ML correction operators applied to a single unseen realization of the flow of length
34,000 time units – 34 times the length of the training data. The focus of the discussion
is the comparison of the architectures described in §4; ensemble size sensitivity is explored
in A1.

We present our results in the form of probability density functions (pdfs) as well
as one and two point correlations. We are interested in the ability of the correction op-
erator to accurately quantify the probability of extreme events – particularly of those
whose return period is longer than the training data. Therefore, all pdf results will be
presented on both a linear and logarithmic scale. The former illustrates the bulk of the
distribution, while the latter emphasizes the tails. Accordingly, we will make use of the
following two error metrics to evaluate the statistical accuracy of the ML predictions.
The Kullback-Liebler (KL) divergence, defined as

DKL(p||q) ≡
∫
p(x) log

(
p(x)

q(x)

)
dx (30)

and the L1 error of the log-pdf

L1(p||q) ≡
∫

| log (p(x))− log (q(x)) |dx. (31)

This latter metric, which we will refer to as the L1 error, is chosen specifically to em-
phasize deviations in the tails. These two metrics can be thought of as measures of over-
all and extreme event specific accuracy respectively.

5.1 Global Statistics

Results for the global pdf, log-pdf, and power spectral density of the stream func-
tion are shown in Figure 4. Here we compare the (ensemble mean) prediction of the ML
corrected coarse model (shown in color) to the true statistics (solid black) and those of
the uncorrected coarse model (dashed black). All three probabilistic architectures cap-
ture the true pdf better than the deterministic architecture – which while significantly
improving the uncorrected simulation, still overestimates the probability of very low am-
plitude events and under estimates the tail statistics. The average (over ψ1 and ψ2) global
KL-Divergence and L1 log-pdf error for each architecture is listed in table 1. In all cases,
the probabilistic architectures outperform the deterministic RNN. The VAE-RNN achieves
the lowest overall KL divergence, but has the highest L1 error, meaning it captures the
bulk of the distribution well but does not capture the tails accurately. In regard to cap-
turing tail risk events, the STORN and VRNN architectures generally provide optimal
results. They accurately reflect the true distribution across the full range of amplitudes,
while the VAE-RNN architecture tends to mildly over-predict the tails.

To highlight the ability of our ML correction operator to extrapolate from the short
training data we show in figure 5 the differences in the statistics of the long (34,000 time
unit) test data and the short (1,000 time unit) training data. The training data is clearly
not converged. In fact, the heavy tails are missing from the training data entirely. As
shown in figure 4, the ML corrections accurately capture the tails of the underlying pdf
even where there the training data does not. From this ability of the ML correction to
extrapolate beyond the training data we infer that the NN is in fact learning some no-
tion of the underlying system dynamics – a key feature in extending the proposed method
to more complex system and even longer time horizons.
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Figure 4: Global pdf, log-pdf, and PSD of ψ1 (upper panel) and ψ2 (lower panel). RD
(solid black), CR (dashed black), RNN (red), VAE-RNN (green), STORN (blue), VRNN
(teal).

In figure 4 we also plot the global power spectral density (PSD), defined as the spa-
tial average of the temporal Fourier transform of the autocorrelation,

Sj (f) ≡
∫ 2π

0

∫ 2π

0

∫
Rj(τ)e

−ifτdτdxdy, (32)

Rj (τ) ≡
∫
ψj(t)ψj(t+ τ)dt. (33)

With the exception of the VAE-RNN architecture, the ML corrections accurately reflect
the true power spectrum across the full range of frequencies – including the two char-
acteristic peaks near f = 0.1. The VAE-RNN architecture accurately captures the lower
frequencies – those with meaningful energy content – but fails to accurately predict the
energy roll off of the highest frequencies. This is an intrinsic limitation of the VAE-RNN
architecture (18). For frequencies with very low energy the prediction error term in the
loss function will become negligibly small, and the training loss will be dominated by the
term enforcing the white noise prior placed on the latent space. For those frequencies,
the latent space z will then be driven to exactly white noise, and due to the lack of com-
munication across the time steps of zt inherent in the solely downstream latent space in-
teraction in (18) the output will also be dominated by white noise. This flat spectrum
phenomenon is also present to a minor extent in the VRNN architecture (Fig. 4) which
also has a downstream latent space dependency. However, the inclusion of the upstream
dependency in the VRNN architecture enables the communication between time steps
zt which helps to additionally regularize the latent space. Finally, we again emphasize
the extrapolation capabilities of our training framework evidenced by the difference be-
tween the PSD of the training data (magenta) and the test data (black).

To further probe the spatiotemporal accuracy of the ML corrected fields we com-
pute the fraction of the domain over which the stream function exceeds a certain thresh-
old as a function of time,

Ac(t)/A =
1

NxNy

Nx,Ny∑
i,j

H (|ψ(xi, yj , t)| − c) . (34)
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(a) (b)

Figure 5: Ground truth reference statistics of 34,000 time unit test data (black) and
1,000 time unit training data (magenta) of ψ1 (a) and ψ2 (b). Each subfigure shows the
pdf on linear and logarithmic scale.

Here c is the given threshold and H(x) is the unit step function such that H(x) = 1
if x ≥ 0 and H(x) = 0 if x < 0. This metric characterizes how reliably the ML cor-
rections can capture the frequency and spatial extent of extremes, and is a proxy for the
ability of the model to capture large-scale extreme phenomena in climate models, such
as heatwaves. The probability density functions of Ac(t)/A for a range of c are plotted
in Figure 6. For brevity we focus on ψ2; results for ψ1 are included in A2. First, we note
that the uncorrected (CR) solution vastly underestimates the amplitude of the true so-
lution – missing the higher-amplitude extremes entirely. In contrast, all ML correction
models are able to capture the bulk of the distribution. Compared to the RNN, the prob-
abilistic architectures track the pdf significantly better, with the VAE-RNN demonstrat-
ing the best performance. The deterministic RNN on the other hand significantly over-
estimates the probability of low area ratios for the lower thresholds c < 1. This is con-
sistent with the results in Figure 4, where the deterministic RNN significantly overes-
timates the likelihood of very low amplitudes. The probabilistic architectures also seem
to demonstrate marginal improvements for higher values of c. However, in these cases
the sample size is small and the pdfs – computed by Monte Carlo sampling – are clearly
not fully converged.

5.2 Regional Statistics

Due to the anisotropic nature of the QG flow under consideration we are partic-
ularly interested in the regional variation of the quality of the ML correction. Therefore,
in addition to the global statistics, we also analyze the statistics as a function of spatial
location. For clarity of exposition we will focus here on the results in the lower layer, ψ2.
The corresponding results for the upper layer, ψ1 – which are qualitatively similar – are
summarized in A2.

5.2.1 Single-Point Statistics

We first illustrate our results in terms of single point statistics in the form of the
pdf and log pdf. The regional power spectra show very little regional variation so we omit
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Figure 6: Pdf of fraction of domain over which |ψ2| exceeds fixed threshold c for range of
c ∈ [0, 2]. RD (solid black), RNN (red), VAE-RNN (green), STORN (blue), VRNN (teal).

them here. We divide the domain [x, y] ∈ [0, 2π] into a 3×3 grid and compute the statis-
tics of the stream function in each sub-region. Figure 7a and b show the pdf and log-
pdf of the ψ2 in each sub-region. The difference in pdf shape with respect to location
is seen most clearly in the asymmetry of the uncorrected coarse pdfs – some are clearly
bimodal, while some peak at small negative values and others peak at small positive val-
ues. As was the case with the global statistics, the probabilistic architectures demon-
strate a clear improvement over the RNN in the ability to correct the local pdfs. Specif-
ically, the latter incorrectly predicts peaks in the pdf near ψ2 = 0 – a feature which is
significantly ameliorated by the probabilistic models, particularly the VAE-RNN and VRNN
architectures. In many cases, the overpredictions by the RNN seem to be correlated with
the previously mentioned anisotropic peaks in the pdfs of the uncorrected coarse data.
This suggests an increased ability of the probabilistic models to handle anisotropic data.
This is perhaps due to their ability to more efficiently encode complex (anisotropic) fea-
tures which had not been seen in training.

A more quantitative view of the regional distribution of the ML correction is given
in Figure 8, where the KL divergence and L1 error are shown as a function of x and y
coordinates – here the pdfs and error metrics are computed at each grid point individ-
ually. All three probabilistic architectures outperform the deterministic RNN in terms
of KL divergence relative to the true pdf. The VAE-RNN architecture has the highest
L1 error, while the RNN, STORN, and VRNN models show similar performance. As a
reference we also plot the topography in solid black contours, and we note that the er-
rors in the ML prediction are generally clustered immediately upstream of the topog-
raphy profile. This is possibly due to an increase in complexity of the flow in this region.
It is more likely that the ML correction operator will encounter vortical structures in test-
ing that were not observed in the short training data set which may lead to higher er-
rors.
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(a)

(b)

Figure 7: Regional pdf (a) and log-pdf (b) of ψ2. RD (solid black), CR (dashed black),
RNN (red), VAE-RNN (green), STORN (blue), VRNN (teal).
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Figure 8: Spatial distribution of KL divergence (upper panel) and L1 metric (lower
panel) for ψ2. From left to right: RNN, VAE-RNN, STORN, VRNN. The topography
profile is show in black.

5.2.2 Fourier Cross-Correlations

To further investigate the spatiotemporal statistics of the corrected fields we com-
pute the normalized cross-correlation between individual Fourier modes

R̂j,m,n ≡
∫
ψ̂j(km, t)ψ̂j(kn, t+ τ)dt√∫
ψ̂2
j (km, t)dt

∫
ψ̂2
j (kn, t)dt

. (35)

We focus our discussion on the zonally constant modes, with wave number km = [0, km].
If m = n, this metric is equivalent to a normalized autocorrelation, and for the case
m ̸= n this metric can be interpreted as a phase shift between Fourier modes. The re-
sults for the three largest modes are shown in Figure 9. We find that the uncorrected
coarse model correlations are already very similar to those of the high resolution refer-
ence. Therefore, the effects of the ML correction on this metric are marginal. In all cases
we observe similar decorrelation profiles (top row of Fig. 9) – with the ML correction
affording a marginal improvement over the uncorrected baseline. The cross-correlations
between Fourier modes (top row of Fig. 9) all fluctuate near 0 for all τ , but again for
all architectures we see minimal affect of the ML correction. One potential strategy to
address this shortfall in the future is through network architectures which operate di-
rectly in Fourier space (Z. Li et al., 2021) – an approach which has been demonstrated
to be effective in modeling turbulent flows including global weather patterns (Z. Li et
al., 2021; Pathak et al., 2022b) .
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Figure 9: Normalized correlation between three largest zonally constant Fourier modes of
ψ2. RD (solid black), CR (dashed black), RNN (red), VAE-RNN (green), STORN (blue),
VRNN (teal).

5.3 Spatiotemporal Features

Finally, we investigate how the spatiotemporal features of the corrected flow fields
compare to the reference solution. To this end we define the zonally averaged stream func-
tion

ψj(y, t) ≡
1

2π

∫ 2π

0

ψj(x, y, t)dx, (36)

a quantity that enables us to analyze the meridional advection of structures in the field
(HovmÖller, 1949; Qi & Majda, 2020). Figure 10 compares the zonally averaged flow field
of the ML corrections to the RD and CR solutions. Since CR and RD are independent
trajectories, we expect the corrected flow fields to share the statistics of the reference
but not agree on a snapshot-by-snapshot basis. To improve the readability of the figure
we limit the time axis to 10, 000 time units. The post-processed flow fields all display
characteristic spatiotemporal structures which are consistent with the reference solution,
and correct the significant magnitude underestimation of the coarse-resolution field.

In the context of climate, persistent extreme weather events such as long periods
of high temperature (heat waves) or low precipitation (droughts) can have outsized ef-
fects on the population (Perkins-Kirkpatrick & Lewis, 2020). In order to implement ef-
fective mitigation strategies it is crucial to accurately quantify the expected duration of
such events, especially as these can occur over a wide range of time scales from days to
months (heatwaves) or years (droughts). These concerns are heightened by the expec-
tation that climate change will lead to an increase in both the frequency and severity
of such events (Barriopedro et al., 2011; Geirinhas et al., 2021; Meehl & Tebaldi, 2004).
For these reasons, it is critical that the ML corrected flow fields accurately reflect the
frequency and duration of such extended high amplitude events. While the QG model
under investigation here lacks temperature or precipitation, we aim to quantify this abil-
ity through the observable

γj(y, t) = MA100

(
|ψ̄j(y, t)|2

)
, (37)

which we generically refer to as “energy”. Here MAT represents a moving average with
a window of length T . We use the filtered energy to eliminate high frequency fluctua-
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Figure 10: Zonally averaged stream function ψ̄2(y, t) .

tions and focus instead on large deviation events which occur over long time scales. To
quantify the statistics of high amplitude excursions of γj(y, t), we count and measure the
duration of periods over which the energy exceeds a given threshold c. We denote the
duration of each such period as τ . Figure 11a shows the total number Nc of high am-
plitude periods as well as their mean duration, τ̄ , and standard deviation στ as a func-
tion of threshold c. We consider values of c ranging from 20% to 90% of the maximum
value of γ observed in the reference dataset: γmax. Note that the uncorrected solution
(CR) fails to accurately capture any of these statistics. On the other hand, all four ML
predictions accurately reflect the dependence of the high amplitude excursion statistics
on the threshold c, while slightly under-predicting the total number and average dura-
tion. However, in all cases the variance of the high amplitude excursions is well predicted.
Note that the ML predictions even capture the non-monotonic behaviour of the total num-
ber of excursions Nc for 0.2 < c < 0.4. This slightly counter-intuitive behaviour indi-
cates that the energy often fluctuates about elevated levels before decaying back down
to a lower baseline. We also show in Figures 11b-h the probability density functions of
the duration τ for a range of c ∈ [0.2, 0.8]γmax – for higher values of c there are insuf-
ficient excursions for meaningfully converged statistics. We omit the pdfs of the uncor-
rected (CR) solution for c > 0.2γmax as these fail to capture the true distributions en-
tirely. Consistent with Figure 11a, we see that in general the pdfs of the ML predictions
peak at slightly lower τ for values of c/γmax > 0.3. However, the probabilistic archi-
tectures are in some case able to ameliorate this underprediction – as seen in 11e,f. In
these cases, the inclusion of the probabilistic latent space pushes the ML prediction slightly
towards higher values of τ – and thus closer to the truth.

–23–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 11: Frequency, expected duration, and variance of high amplitude excursions of
γ2 as a function of threshold c (a). Probability density function of τ for fixed values of c
(b-h).
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6 Discussion

In this work we developed a non-intrusive data-driven framework for probabilis-
tically debiasing under-resolved long-time climate simulations. This framework, based
on training a NN correction operator on nudged simulations of an under-resolved dynam-
ical system, enables learning the intrinsic system dynamics from very short training data
sets. The probabilistic extension we propose in this work allows us to significantly im-
prove the extrapolation capabilities of the previous state-of-the-art and enable the quan-
tification of the uncertainty therein. As a test case we considered a two-layer quasi-geostrophic
flow in a periodic domain with imposed bottom topography. The topography was included
to introduce anisotropy for the purposes of studying the ability of our approach to cap-
ture varying regional statistics – a feature not included in the QG example described in
previous work. The ML correction operators were trained on trajectories spanning 1,000
time units and tested on 34,000 time units – the statistics of which differ significantly
from those of the much shorter training data. We demonstrated the superior performance
of our probabilistic framework through it’s increased ability to accurately predict both
global and regional statistics as well as multiple metrics quantifying the spatial and tem-
poral distribution of rare events. The improvements over the deterministic model described
in previous work were especially pronounced when analyzing the spatial variation of ex-
treme (high amplitude) events – a crucial feature in assessing the impact of extreme weather.

One of the key innovations of this work is the variational generalization of the LSTM
based network architectures used in previous studies. We investigated three recently
proposed architectures (VAE-RNN, STORN, VRNN) (Fraccaro, 2018; Bayer & Osendor-
fer, 2015; Chung et al., 2016), which primarily differ in the way the probabilistic latent
space interacts with the recurrent layer of the network. These dependencies can be cat-
egorized as being either upstream or downstream of the recurrence relation in the com-
putational graph. While we found that all three architectures provide a benefit over the
deterministic baseline, the VAE-RNN, which has a strict downstream dependence, achieved
the lowest overall error as measured by the KL-divergence. However, the downstream
dependency hinders the prediction of outlier events and leads to an overestimation of the
high frequency spectral content. These issues are ameliorated through the introduction
of an upstream latent space dependency which further regularizes the latent space by
allowing for communication between time steps of the latent space encoding. Accord-
ingly, the STORN (upstream only) and VRNN (upstream and downstream) architec-
tures demonstrate the greatest ability to accurately capture the far tails of the true dis-
tribution as well as the energy content across the full spectral range. Additionally, we
found the STORN and VRNN architectures were significantly more robust to over-fitting,
with the VAE-RNN on the other hand showing significant deterioration in predicative
capabilities when trained for longer than optimal. However, as the VAE-RNN is simply
a VAE appended independently at each time step, these shortcomings should be weighed
against its simplicity and ease of implementation. The optimal architecture design will
likely depend on the specific application and we hope the analysis discussed in this work
can serve as a guide to researchers employing our framework.

While our approach has demonstrated significant skill in correcting the long time
statistics of the QG climate model over a range of scales, several limitations remain. Spe-
cific to our results: the accurate reconstruction of two point statistics remains a chal-
lenge. Our results show that the primary means by which our approach corrects the under-
resolved trajectory is by correcting the spatiotemporal dynamics of different Fourier modes
independently – while the phase shifts between these remain relatively unchanged. One
potential avenue to address this issue is through the use of Fourier Neural operators (Z. Li
et al., 2021; Z. Li, Peng, et al., 2022; Pathak et al., 2022b) which operate directly in Fourier
space, and may therefore be more effective at correcting the small discrepancies in phase
shifts between individual modes. Additionally, the ML corrected fields slightly, but sys-
tematically, underestimate the number and duration of high amplitude excursions. Ad-
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ditionally, in order to facilitate long time horizon simulations we have focused in this work
on a simplified flow, and quantifying the improvements of our probabilistic framework
when applied to a full-scale climate model remains the topic of ongoing research.

The proposed framework also has several more fundamental limitations which must
be mentioned. First and foremost, an intrinsic limitation of post-processing approaches
is their inability to correct processes that are missing from the coarse-resolution model
entirely. Improvements in the representation of such processes, such as cloud formation
and convective precipitation, requires intrusive corrections to the coarse-resolution model
via either improved subgrid-scale closures (Schneider, Teixeira, et al., 2017; Cohen et al.,
2020; Lopez-Gomez et al., 2020), or localized high-resolution simulation (Randall et al.,
2003; Kooperman et al., 2016). Second, the current framework implicitly assumes that
the system is statistically stationary. While similar frameworks have been applied in non-
stationary systems (S. Zhang et al., 2024), a correction operator trained under this as-
sumption may fail when applied to trajectories which include strong transitory periods.
Finally, the fact that the ML correction operators discussed here are intended to pro-
duce long time statistics, but are trained on very short data, implies that there is no ob-
vious metric which can be monitored during training to prevent over-fitting (see A1).
However, we have found that the upstream latent space dependencies, as in the STORN
and VRNN architectures, serve to regularize the network and drastically increase the ro-
bustness of the NN’s to over-training. Additionally, ensemble-based predictions help to
ameliorate these concerns even further. However, we acknowledge that the efficacy of these
strategies may vary from application to application, and in some cases more rigorous reg-
ularization strategies may be needed.

In conclusion, we have demonstrated that ensembles of VAE-based RNNs are ef-
fective at increasing the extrapolation and rare event quantification capabilities of the
non-intrusive debiasing framework introduced by Barthel Sorensen et al. (2024). We in-
vestigated several recently developed architectures, which differ primarily in how the prob-
abilistic latent space interacts with the recurrent layer of the neural network. We have
classified these interactions as upstream or downstream, and demonstrated that while
both are effective, networks with downstream interactions – especially in the absence of
additional upstream interactions – are susceptible to over-fitting, and noise corruption.
While our work has focused on the application to climate modeling, the general train-
ing strategy outlined in this work is applicable to any scenario in which long time sta-
tistical analysis requires computationally intractable high resolution numerical simula-
tions.
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Appendix A

A1 Validation and Model Selection

Many machine learning applications operate in what might be referred to as a “data-
rich” environment. Even if the total available data is small in an absolute sense, it is com-
mon to use a large fraction 75− 90% of this available data for training, with only the
small remainder used to generate the presented results. The ML models considered here
operate in a much more “data-poor” environment, with only 3% of the total data seen
in training. One of the challenges in this regard is the lack of obvious metric for online
validation. In a “data-rich” environment, a small fraction of the training set may be set
aside for validation. Then, as training progresses, the validation error, i.e. the training
loss evaluated on the validation set, is monitored and training is stopped when the val-
idation error no longer decreases with each passing epoch. However, if the goal is sta-
tistical accuracy over time horizons much longer than the training data, monitoring the
training loss (generally the L2 error) over a small fraction of the already limited train-
ing set does not provide meaningful insight into the eventual performance when applied
to long time series data.

To this end, we conducted a parametric study of the impact of both training time
per ensemble member and ensemble size. The results thereof are summarized in figure
A2 which shows the global average (over ψ1 and ψ2) KL-divergence (30) and L1 error
(31). This parametric study revealed four crucial observations. First, the probabilistic
architectures generally lead to lower Kl divergence regardless of training time or ensem-
ble size – note the different color scales between the four subfigures in figure A2a. Sec-
ond, for a given ensemble size the variational models require less training time to reach
a desired level of accuracy. Third, above a certain minimum training time – approximately
500 epochs – it is more advantageous to increase the ensemble size rather than train the
models for longer. Fourth and finally, for the probabilistic architectures the error in the
prediction of the tails (quantified by the L1 metric) increases if the model is trained for
too many epochs. This is especially pronounced for the VAE-RNN architecture, and is
in contrast to the KL-divergence – which quantifies the overall accuracy – which decreases
monotonically in almost all cases. The lone exception being the small ensembles of the
VAE-RNN architecture.

This deterioration of rare event prediction with increased training is likely due to
the probabilistic models over-fitting to the latent space prior. The magnitude of the MSE
term in the training loss is proportional to the magnitude of the model output, while the
KL divergence term enforcing the latent space prior remains the same order of magni-
tude regardless of the output. This means that the optimization will tend to ignore er-
rors in the tails of the output distribution in favor of driving the latent space represen-
tation of these outlier events ever closer to the pure Gaussian prior. This phenomenon
is especially pronounced, in the VAE-RNN with its purely downstream latent space de-
pendency (18). In that case – assuming a linear activation – we have yt ∼ zt and thus
the model output will become increasingly corrupted by white noise. This mechanism
is also present to a smaller extent in the VRNN architecture, but is largely ameliorated
by the regularizing affects of the upstream latent space dependency which enables com-
munication between time steps zt.

To illustrate the effects of considering an ensemble of NNs we show in figure A1
the ensemble mean and one standard deviation spread of the global pdf predictions for
an ensemble size of 6 – the same as the results presented in §5. To illustrate the vari-
ance in both the bulk and the tails of the distribution we plot these on a linear and log
scale – for the latter we zoom in on the tail of the pdf to best illustrate the ensemble vari-
ance. There are two main conclusions to be drawn from this figure. First, the variance
is modest but meaningful – most notably the tails of the pdf – indicating that an ensem-
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Figure A1: Global pdf of ψ2 on a linear scale (upper panel) and log-scale (lower panel).
RD (solid black), RNN (red), VAE-RNN (green), STORN (blue), VRNN (teal). Shaded
area signifies ensemble mean ± 1 standard deviation.

ble analysis does improve the predictive capabilities of the ML correction. Second, the
variance is very similar across all architecture types.
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(a)

(b)

Figure A2: Average error in prediction as a function of ensemble size and number of
epochs trained. KL divergence (a), L1 norm of log pdf error (b), integrated variance (c),
and integrated log variance (d). Lines indicate 1000, 2000, 3000, and 4000 total epochs
(left to right).
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A2 Additional Results
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Figure A3: Pdf of fraction of domain over which |ψ1| exceeds fixed threshold c for range
of c ∈ [0, 2]. RD (solid black), RNN (red), VAE-RNN (green), STORN (blue), VRNN
(teal).

Figure A4: Normalized correlation between three largest zonally constant Fourier modes
of ψ1. RD (solid black), CR (dashed black), RNN (red), VAE-RNN (green), STORN
(blue), VRNN (teal).
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(a)

(b)

Figure A5: Regional pdf (a) and log-pdf (b) of ψ1. RD (solid black), CR (dashed black),
RNN (red), VAE-RNN (green), STORN (blue), VRNN (teal).
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Figure A6: Spatial distribution of KL divergence (upper panel) and L1 metric (lower
panel) for ψ1. From left to right: RNN, VAE-RNN, STORN, VRNN. The topography
profile is show in black.
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure A7: Zonally averaged stream function ψ̄1 (a). Frequency, expected duration, and
variance of high amplitude excursions of γ1 as a function of threshold c (b). Probability
density function of τ for fixed values of c (c-g).
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