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Abstract Large‐scale dynamical and thermodynamical processes are common environmental drivers of
high‐impact weather systems causing extreme weather events. However, such large‐scale environmental
conditions often display systematic biases in climate simulations, posing challenges to evaluating high‐impact
weather systems and extreme weather events. In this paper, a machine learning (ML) approach was employed to
bias correct the large‐scale wind, temperature, and humidity simulated by the atmospheric component of the
Energy Exascale Earth System Model (E3SM) at ∼1° resolution. The usefulness of the ML approach for
extreme weather analysis was demonstrated with a focus on three high‐impact weather systems, including
tropical cyclones (TCs), extratropical cyclones (ETCs), and atmospheric rivers (ARs). We show that the ML
model can effectively reduce climate bias in large‐scale wind, temperature, and humidity while preserving their
responses to imposed climate change perturbations. The bias correction is found to directly improve water vapor
transport associated with ARs, and representations of thermodynamical flows associated with ETCs. When the
bias‐corrected large‐scale winds are used to drive a synthetic TC track forecast model over the Atlantic basin,
the resulting TC track density agrees better with that of the TC track model driven by observed winds. In
addition, the ML model insignificantly interferes with the mean climate change signals of large‐scale storm
environments as well as the occurrence and intensity of three weather systems. This study suggests that the
proposed ML approach can be used to improve the downscaling of extreme weather events by providing more
realistic large‐scale storm environments simulated by low‐resolution climate models.

Plain Language Summary A machine learning model is employed to bias correct the large‐scale
dynamical and thermodynamical fields simulated by a low‐resolution global climate model. The impact of the
machine learning model on the large‐scale storm environment associated with tropical cyclones (TCs),
extratropical cyclones (ETCs), and atmospheric rivers (ARs) was evaluated. It is found that the ML bias
correction can effectively reduce the mean climate biases in large‐scale wind, temperature, and humidity fields
associated with the three types of high‐impact weather systems. For storms such as ETCs and ARs that can be
partly resolved by the low‐resolution climate models, the machine learning bias correction shows skills in
improving the long‐term statistics of these weather events. For storms such as TCs that can not be well resolved
in the low‐resolution climate models, the machine learning approach produces more realistic statistics of the
tropical cyclone tracks by providing more realistic large‐scale steering winds for downscaling approaches. By
reducing model biases without affecting the climate change signals in large‐scale storm environments derived
from the low‐resolution climate model simulations, machine learning bias correction has the potential to provide
more reliable projections for assessing future changes in extreme weather events.

1. Introduction
General circulation models (GCMs) are the most common approach used in projecting climate change including
future changes in high‐impact weather systems such as atmospheric rivers (ARs), tropical cyclones (TCs), and
extratropical cyclones (ETCs) which have substantial societal and economic impacts (e.g., Angélil et al., 2016;
Dai & Nie, 2022; Guan & Waliser, 2017; Merz et al., 2020; Moon et al., 2018; Seneviratne et al., 2012, 2023;
Wehrli et al., 2018). However, achieving a proper representation of these weather systems for hazard assessment
requires high spatial resolutions (on the order of a few kilometers) to realistically simulate the storm processes
(e.g., convection), which is computationally demanding for global modeling (e.g., Kanada et al., 2017; Kanada &
Wada, 2016; Kendon et al., 2014; Kitoh & Endo, 2016; Lucas‐Picher et al., 2021; Mori et al., 2019; Nie
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et al., 2018; Willison et al., 2013). Consequently, downscaling techniques have been widely used in combination
with GCMs at low resolution (on the order of hundreds of kilometers) to yield important scientific insights on past
and future changes of high‐impact weather events (e.g., Emanuel, 2013; Emanuel et al., 2006; Knutson
et al., 2013, 2019, 2020; Lee et al., 2020).

Downscaling approaches rely on the large‐scale storm environments simulated by GCMs to project future
changes of high‐impact weather events through established statistical relationships (e.g., Balaguru et al., 2023;
Colle et al., 2015; Dixon et al., 2016; Emanuel, 2013), or to provide boundary conditions for limited area or
regional models to simulate the local climate and high‐impact weather events (e.g., Fu et al., 2005; Giorgi
et al., 1994; Gutowski et al., 2020). Accurate simulation of the large‐scale storm environments by GCMs is
therefore essential to achieve reliable downscaling to evaluate future changes in frequency, intensity, and
characteristics of high‐impact weather events. However, the large‐scale storm environments governing regional
to local‐scale weather systems are often not well represented in the GCMs due to varying levels of systematic
biases and uncertainties in representing smaller‐scale processes that interact with the large‐scale environments
(e.g., Collins et al., 2013; Flato et al., 2013; Mueller & Seneviratne, 2014; Volosciuk et al., 2015; Zappa
et al., 2013). As a result, GCM bias corrections have been an important research topic in downscaling studies and
many bias correction methods have been developed to provide more reliable regional climate information (e.g.,
Christensen et al., 2008; Deque, 2007; François et al., 2020; Gudmundsson et al., 2012; Vaittinada Ayar
et al., 2021; Vrac et al., 2012; Z. Xu & Yang, 2012; Z. Xu et al., 2021). Studies have demonstrated that correction
of the GCM mean bias may improve dynamical downscaling of local‐scale high‐impact weather systems such as
tropical cyclones over the North Atlantic Ocean (e.g., Bruyère et al., 2014; Done et al., 2015).

In recent years, advances in machine learning (ML) techniques have enabled the application of modern artificial
neural network architectures in bias correction and statistical downscaling of GCMs (e.g., Fulton et al., 2023; Han
et al., 2021; Moghim & Bras, 2017; Steininger et al., 2020; W. Xu et al., 2021; F. Wang & Tian, 2022). Several
types of ML approaches have proven to successfully reduce spatial and temporal biases in GCMs (Fulton
et al., 2023; F. Wang & Tian, 2022). In this paper, we introduce a long short‐term memory neural network
(LSTM) machine learning (ML) approach (Barthel Sorensen et al., 2024; Charalampopoulos et al., 2023)
developed to bias correct the climate simulations produced by the U.S. Department of Energy (DOE) Energy
Exascale Earth System Model (E3SM, Golaz et al., 2022). Specifically, the developed ML approach is employed
to postprocess the large‐scale wind (U, V), temperature (T), and humidity (Q) from long‐term present‐day and
future climate simulations conducted with version 2 of the E3SM Atmosphere Model (EAMv2) at a horizontal
grid spacing of ∼1°, driven by prescribed sea surface temperature and sea ice as lower boundary conditions. With
an ultimate goal of improving the modeling of extreme weather events, we evaluate the impact of ML bias
correction on large‐scale storm environments and the long‐term statistics of the high‐impact weather systems
simulated by EAMv2, with a focus on the ARs, TCs, and ETCs that frequently cause extreme weather events over
the globe. Importantly, we also evaluate the impact of the ML bias correction on the responses of the three high‐
impact weather systems to future climate change. The goal of this study is to determine how well low‐resolution
climate models with ML bias correction may provide more skillful simulations of large‐scale storm environment
conditions than those without bias correction, thus providing a path to improved assessments of extreme weather
events.

In Section 2, we introduce the experimental design and ML bias correction method. In Section 3 we evaluate the
impacts of the ML model on the GCMmodel biases and the GCM projected climate change signals in large‐scale
model states (i.e. U, V, T, Q). Then the long‐term statistics of ARs, TCs, and ETCs and their associated large‐scale
storm environment with and without ML bias correction are compared and evaluated for the present‐day climate
(1979–2014) (Section 4). Section 5 presents the impact of ML bias correction on the responses of ARs, TCs, and
ETCs to climate change projected by pseudo global warming (PGW) simulations with and without postprocessing
by the ML bias correction. Lastly, conclusions and discussions are given in Section 5.

2. Methodology
2.1. A Brief Overview of E3SM Atmosphere Model (EAM)

E3SM is a global Earth system model developed by the U.S. Department of Energy (Leung et al., 2020) with the
first version released in 2018 (Golaz et al., 2019). This study uses the E3SM Atmosphere Model version 2
(EAMv2, Golaz et al., 2022) at standard resolution (also referred to as the “low‐resolution” configuration). In
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brief, EAMv2 uses separate computational grids for dynamics and column
physics parameterizations. The dynamical core is configured with the “np4”
cubed‐sphere mesh with a horizontal resolution of ∼110 km to solve the
equations for large‐scale dynamics and tracer transport (e.g., Dennis
et al., 2012; Taylor & Fournier, 2010). The column parameterizations are run
on a “pg2 grid” which shares the element grid with the dynamics but has a 2 ×
2 subgrid of quadrilaterals for a total of four columns per element (e.g.,
Herrington et al., 2019; Lauritzen et al., 2018). The key subgrid‐scale physical
parameterizations in EAMv2 include representations of deep convection (G.
J. Zhang & McFarlane, 1995), turbulence and shallow convection (Golaz
et al., 2002; Larson et al., 2002), cloud microphysics (Gettelman & Morri-
son, 2015; Morrison & Gettelman, 2008; Y. Wang et al., 2014), aerosol life
cycle (Liu et al., 2016; H. Wang et al., 2020), and shortwave and longwave
radiation (Iacono et al., 2008; Mlawer et al., 1997). In addition, EAMv2 is
interactively coupled with a land model (Oleson et al., 2013) that uses the
same “pg2” grid for column parameterizations. EAMv2 is configured with 72
vertical layers, extending from the Earth's surface to ∼0.1 hPa (∼64 km). The
vertical grid spacing is uneven, with the layer thickness ranging typically
from 20 to 100 m near the surface and up to 600 m near the model top.

2.2. Model Simulation

The simulations conducted for this study use prescribed sea surface tem-
peratures and sea‐ice concentrations, following the Atmospheric Model
Intercomparison Project protocol (AMIP, Gates et al., 1999). Table 1 sum-

marizes the key configurations of these E3SMv2 simulations. The first group (Group 1) consists of one baseline
simulation (i.e., “CLIM”) and two PGW simulations (i.e., “SSP245” and “SSP585”). CLIM is a present‐day
free‐running simulation driven by prescribed observed monthly mean sea surface temperature (SST) and sea
ice concentration (SIC) from the input4mip data sets (Reynolds et al., 2002) as the lower boundary conditions.
Other external forcing data, including volcanic aerosols, solar variability, concentrations of greenhouse gases,
and anthropogenic emissions of aerosols and their precursors, were prescribed following the World Climate
Research Program Coupled Model Intercomparison Project‐Phase 6 (CMIP6, Eyring et al., 2016; Feng
et al., 2020; Hoesly et al., 2018). Emissions of aerosols and their precursor gases were set to the values of the
year 2010 to represent the present‐day condition. The simulation was run from 1 January 1978 to December
2014. The first year of model output was discarded as model spin‐up, and the remaining 36 years of model
output were used for analysis.

The SSP245 and SSP585 are two EAMv2 simulations conducted with the PGW approach that have been widely
used in climate modeling (e.g., Schär et al., 1996; Xue et al., 2023). The PGW approach has been proven as a
useful experiment strategy that enables targeted exploration of regional impacts from future climate change while
avoiding the large ensembles typically required to address internal variability (Xue et al., 2023). In a PGW
experiment, the large‐scale changes in the climate system were imposed on a control climate simulation by
modifying the boundary conditions. In this study, the imposed climate change perturbations were added to the
boundary conditions of SST and SIC for CLIM that represent present‐day climate conditions. Specifically,

• SSP245: the patterned SST and SIC perturbations (i.e. Δ) associated with the Shared Socioeconomic Pathways
2–4.5 scenario were added to the SST and SIC boundary conditions used in CLIM. Specifically, the monthly
mean SST and SIC model outputs during the 1991–2010 (present‐day) and 2041–2060 (future climate) pe-
riods were extracted from the coupled simulations conducted with 15 CMIP6 models (See Table A1). The
climatological mean of the monthly SST and SIC over the two periods were then computed by averaging each
quantity over the 20 years, and the ΔSST and ΔSIC were derived as the difference between the present‐day
and future climatological mean SSTs and SICs for each month and each grid point. Finally, the multi‐model
ensemble mean (MME) of ΔSST and ΔSIC were computed and added to the SST and SIC that were prescribed
in the CLIM simulation as climate change perturbations for the pseudo SSP245 global warming experiment.
We note that the monthly mean ΔSST and ΔSIC were added to each corresponding month to preserve the
monthly and seasonal cycles of ΔSST and ΔSIC. Overall, the SSP245 perturbations correspond to a 1–2 K

Table 1
List of Simulations for Present‐Day and Future Climate Scenarios

Group Short name Time period
Bias

correction Scenario

1 CLIM 1979–2014 No Present‐day

1 SSP245 pseudo 1979–
2014

No Future climate

1 SSP585 pseudo 1979–
2014

No Future climate

2 ML (CLIM) 1979–2014 Yes Present‐day

2 ML (SSP245) pseudo 1979–
2014

Yes Future climate

2 ML (SSP585) pseudo 1979–
2014

Yes Future climate

Note. The three simulations in Group 1 were conducted with the coupled
atmosphere‐land components of EAMv2 with default “low‐resolution”
configuration at ∼110 km grid spacing (see Golaz et al., 2022). All simu-
lations were conducted with prescribed sea surface temperature (SST) and
sea ice concentration (SIC) (see context in Section 2.2 for details). Group 2
consists of three simulations that apply ML bias corrections to the corre-
sponding simulations in Group 1. Here ”pseudo 1979–2014” refers to sim-
ulations driven by SST and SIC with climate perturbations corresponding to
the difference between (2014–2060) and (1991–2010) added to the SST and
SIC of the CLIM period of 1979–2014.
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warming in the annual mean SST, and 5− 10% reduction in the annual mean SICs in most regions over the
globe compared to the observed SST and sea ice in the present‐day climate (see Figures A1a and A1b).

• SSP585: same as SSP245, except that the CMIP6 coupled simulations conducted under the Shared So-
cioeconomic Pathways 5–8.5 scenario during 2041–2060 were used to derive the SST and SIC perturbations
for the PGW experiment. Compared to the SSP245, SSP585 with an end‐of‐century forcing of 8.5 W m− 2

instead of 4.5 W m− 2, results in stronger warming of SSTs and larger reductions of SICs (see Figures A1c
and A1d).

We note that the two PGW simulations, SSP245 and SSP585, used the same configurations as for CLIM, except
with imposed climate change perturbations added to the boundary conditions of SST and SIC. Therefore, the
differences between SSP245 (SSP585) and CLIM were derived in this study to represent the model responses
(e.g., large‐scale storm environment and statistics of extreme events) to the climate‐change‐induced SST and SIC
perturbations.

2.3. Machine Learning Bias Correction

The second group (Group 2) consists of three simulations that are the same as Group 1 except that the machine
learning (ML) model was used to post‐process the three simulations in Group 1 to bias correct the EAMv2
simulations of the present‐day and future climates. In brief, the ML model employed for bias correction was
proposed by Barthel Sorensen et al. (2024) in which a neural network (NN) operator acts on the coarse‐resolution
climate model simulation in a postprocessing manner. The NN operator was trained to learn a map between a
coarse resolution EAMv2 historical simulation and the ERA5 reanalysis data (Hersbach et al., 2020) that rep-
resents the real atmosphere, allowing for the correction of large‐scale dynamics of the EAMv2 model. A full
description of the mathematical framework for the ML model is included in Appendix A2. Specifically, the ML
training input was provided by a nudged simulation instead of using arbitrary coarse trajectories from the free‐
running simulations (i.e., CLIM). Here, the nudged simulation was conducted with the same configuration of
EAMv2 as in CLIM, except that the model state (i.e. U, V, T, Q) was constrained toward the ERA5 reanalysis that
has been remapped to the EAMv2 horizontal grid following S. Zhang et al. (2022) and Sun et al. (2019). With
nudging the trajectory of the model state, which predominately obeys the dynamics of the coarse resolution
EAMv2 model, is constrained from systematically as well as chaotically diverging from the ERA5 reanalysis. To
counteract the artificial dissipation introduced by the nudging tendency, the spectrum of the nudged solution is
corrected to match the free‐running EAMv2 model (see Equations A2–A5 in Appendix A2). Training on this
specific pair of trajectories (the spectrally corrected nudged EAMv2 solution and the ERA5 data) allows the
network to learn a map from the chaotic attractor of the coarse resolution EAMv2 model to that of the reference
data (i.e., ERA5 reanalysis) without being corrupted by chaotic divergence. At test time, the correction operator is
then applied to the output of free‐running EAMv2 simulation which is mapped into a trajectory residing in the
attractor of the reference data. More detailed information for the development of the ML model can be found in
Barthel Sorensen et al. (2024).

The performance of the ML model in correcting large‐scale model states, including U, V, T, and Q, has been
verified in Barthel Sorensen et al. (2024) using EAMv2 historical simulations from 1979 to 2014. It is found that
the ML model can correct the coarse E3SM output to closely reflect the 36‐year ERA5 statistics for all prognostic
variables and significantly reduce their spatial biases (see Section 4 of their paper). In this study, the same ML
model was applied to bias correct the 3‐hourly instantaneous U, V, T, and Q model output at each grid point and
72 model levels from the three simulations in Group 1. In this study, the pair of EAMv2 simulations with and
without ML bias correction during the historical period of 1979–2014, that is, CLIM andML (CLIM) are the same
as those verified in Barthel Sorensen et al. (2024). In addition, we further applied the ML bias correction to the
PGW simulations for future climate, which is referred to as ML (CLIM), ML (SSP245), and ML (SSP585) in
Table 1 and throughout the rest of this manuscript. Here, no new training was carried out for the bias correction of
future scenarios. Therefore, the implied hypothesis here is that the bias correction model trained using the his-
torical simulation can be applied to correct similar biases in future climate scenarios. Further analyses and
evaluations in this regard will be presented in Section 3.2.

Overall, different from Barthel Sorensen et al. (2024) focusing on the development and assessment of the ML
methodology, this paper focuses on presenting a detailed comparison between the Group 1 and Group 2
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simulations to quantify the effects of the ML bias correction on the EAMv2 simulations of mean climate, extreme
events, and climate change signals, which will be presented in Sections 3–4.

2.4. Analysis Strategy

As discussed above, the current ML bias correction model was only designed to correct the model state variables
of U, V, T, and Q in the EAMv2 model output to improve the large‐scale atmospheric flows. Therefore, the
discussion in Sections 3–4 will rely on the metrics that can be derived from these model state variables through
offline diagnostic equations or post‐processing diagnostic package (see Appendix B). Other climate vari-
ables such as precipitation can be valuable for climate communities and impact studies, but they have not been
included in our ML bias correction yet and therefore will not be discussed in this study. The limitations of our ML
bias correction approach will be further discussed in Section 5.

In addition, the raw data sets from the simulations in Table 1 were the 3‐hourly output of U, V, T, Q during 1979–
2014 on the EAMv2 model grid as mentioned in Section 2.1. The data were post‐processed into a 1.5° × 1.5°
normal lat‐lon grid with the bilinear interpolation to facilitate the convenience of analysis in this study. A similar
remapping process was also applied to the ERA5 reanalysis data for comparison and the derivation of model
biases metrics in Sections 3–4. All quantities derived from U, V, T, and Q, as discussed in Appendix B, were
diagnosed or processed using the 3‐hourly data. The average of all 3‐hourly data samples at each month was
computed to form the monthly mean data sets during 1979–2014, and these monthly mean data sets will be further
used to derive the seasonal and annual means for the diagnostic figures in Section 3. Moreover, the diagnostic
metrics in Section 4 for TCs, ETCs, and ARs were generated with the algorithms and functions provided by the
TempestExtremes package (P. A. Ullrich et al., 2021). The input to TempestExtreme is 3‐hourly data derived
from the U, V, T, and Q model output. The detailed configuration used by our study for TempestExtremes is
described in Appendix B. A similar approach as mentioned above was used to process the high‐frequency di-
agnostics from TempestExtreme into monthly, seasonal, or annual mean metrics for discussions in Section 4.
Extra information for plotting details was also added to the captions under each figure in Sections 3–4.

Finally, the two‐tailed Student's t‐test was employed for generating the significance test on the 2‐D plots (stip-
plings overlaid on the figures) in Sections 3 and 4. The significance test in our study was performed in a consistent
manner, namely, we first processed the annual mean values at each grid point of the 2‐D map over 36 years from
1979 to 2014, and then we calculated the sample average and variances from the 36 annual mean values and
generated the probabilities for the Student‐t test. Grid points with probability above the critical significance level
of 0.1 or 0.05 (provided in the captions under the specific figure) are dotted to indicate that the means are sta-
tistically different at these grid points. While more rigorous statistical tests (e.g., Wilks, 2016) may be used to
determine the significance of the differences, the Student's t‐test results in combination with our understanding of
the physical processes represented in E3SM are helpful for interpreting the differences between the results from
EAMv2 simulations with and without ML bias correction.

3. Validation of Machine Learning (ML) Bias Correction
3.1. Bias Correction on Historical Simulation

A thorough evaluation of the performance of ML bias correction in improving the mean climate statistics was
detailed in Barthel Sorensen et al. (2024). In this section, we present a brief evaluation of the ability of the ML
approach to reduce the mean climate biases in EAMv2, which will be used to facilitate our discussion in the next
subsection and Section 4. Figure 1 shows the zonal mean and annual mean biases in the zonal wind (U), tem-
perature (T), and specific humidity (Q) fields of the EAMv2 simulations without and with ML bias correction.
The metrics were derived by comparing CLIM and ML (CLIM) in Table 1 with the ERA5 reanalysis during the
1979–2014 period. The biases in the U, T, and Q fields from ML (CLIM) (Figures 1b, 1e, and 1h) are system-
atically smaller than those in CLIM (Figures 1a, 1d, and 1g) over most regions and vertical levels, meaning that
the ML model leads to promising bias reduction in the mean climate fields simulated by EAMv2. We also note
that the performance of ML bias correction varies with the quantities and spatial locations. ComparedML (CLIM)
to CLIM, more significant bias corrections are seen in the temperature (Figure 1d versus Figure 1e) and humidity
fields (Figure 1g versus Figure 1h), while relatively weaker bias reductions are seen in wind fields (Figure 1a
versus Figure 1b). In addition, more promising bias corrections are seen in the near‐surface levels relative to the
upper model levels in most regions over the globe (also see Figure C1 in Appendix), especially for the wind fields
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(Figure 1a versus Figure 1b). Further investigation on the profiles of the global and annual mean standard de-
viation of U, T, and Q fields (Figures 1c, 1f, and 1i) from ERA5 reanalysis shows the clear vertical structure in the
variability of these fields. In particular, the standard deviation of U (Figure 1c) in the upper troposphere
(10− 15 m s− 1) is about 3–5 times larger than those at near‐surface levels (3− 5 m s− 1). The differences in
variability with altitude in these fields could limit the skill of the ML bias correction model at those levels.

For a more quantitative evaluation, Figure 2 further shows the mean biases and root‐mean‐square error (RMSE) of
selected physical quantities from CLIM andML (CLIM). The mean biases are normalized by the observed values,
while the RMSE is normalized by the RMS of the observed values to demonstrate the relative rank of the biases in

Figure 1. Zonal and annual mean model biases in the zonal wind (U, unit: m s− 1, panels a–b), temperature (T, unit: K, panels d–e), and water vapor mixing ratio (Q, unit:
g kg− 1, panels g–h) averaged from 1979 to 2014. Shown are the results from free‐running (i.e., CLIM, first column) and ML bias‐corrected (i.e., ML (CLIM), second
column) EAMv2 simulations. The biases are derived by comparing annual mean quantities between EAMv2 simulations with ERA5 reanalysis. The dotted region
indicates that the differences are significant at a 95% confidence level from a Student's t‐test. The third column shows the standard deviation of U, T, and Q at each
pressure level from the ERA5 reanalysis. The log‐linear algorithm is used to interpolate the EAMv2 data on the hybrid sigma‐pressure level to the pressure level for
comparison with ERA5 reanalysis. Details of the simulation setups can be found in Table 1.
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different variables. We can see that the ML bias correction effectively reduces the biases by 10%–20% in the
wind, temperature, and humidity fields over the globe (Figure 2a), especially in the mid‐latitude regions.
Meanwhile, the global and regional patterns of large‐scale wind, temperature, and humidity fields are also sys-
tematically improved as evidenced by the RMSEmetrics (Figures 2c and 2d). With these results, we conclude that
the ML approach is capable of reducing biases in the mean climate simulated by EAMv2, which may produce a
more realistic representation of the large‐scale dynamics and thermodynamics fields associated with extreme
events.

3.2. Impact of Bias Correction on Mean Climate Change Signals

As discussed in Section 2.2, the ML model trained with EAMv2 nudged simulations and ERA5 reanalysis during
the historical period is directly used to correct the EAMv2 simulations for historical and future climate scenarios.
Unlike many previous studies (e.g., Chen et al., 2020, 2021; Gutiérrez et al., 2019; Teutschbein & Seibert, 2012)
which assumed that the bias correction was identical in present‐day and future climates, our ML bias correction
does not assume that the biases in climate model simulations are independent of the mean climate states. In other
words, we do not assume that the error correction terms computed in the present‐day climate can be simply added
to the future runs. It is likely, however, that the large‐scale structure and magnitude of model biases are very
similar between the climates of the two time periods. If this is true, the bias correction should not significantly
interfere with the large‐scale climate change signals resulting from the imposed perturbations for the PGW
simulations. We demonstrate that this is the case for our employed ML model by checking the features of the
large‐scale climate change signals before and after the ML bias correction in this section.

Figure 3 shows the spatial distribution of the temperature changes at 850‐hPa due to the imposed climate change
perturbations in SST and SIC for the SSP2‐4.5 (top row) and SSP5‐8.5 (bottom row) future scenarios. The
patterns and magnitude of changes in near‐surface temperature comparing the PGW and CLIM simulations
(Figures 3a and 3c) are largely consistent with the PGW perturbations of SST (Figures A1a and A1c). These
responses are expected due to the direct impact of the prescribed SST perturbations on the temperatures in the
lower atmosphere. Compared with the climate change signals without bias correction (Figures 3a and 3c), ML
bias correction applied to CLIM and the PGW simulations overall does not significantly modify the patterns and

Figure 2. First row: mean biases in selected physical quantities averaged over the globe (panel a) and mid‐latitude region
([30–60N] and [30–60S] latitude bands, panel c) from EAMv2 simulations without (i.e., “CLIM” in red) and with (i.e.,“ML
(CLIM)” in blue) ML bias correction, normalized by the observed value (i.e., ERA5 reanalysis); Second row: same as the
first row, but for root‐mean‐square errors (RMSE) of anomaly patterns between EAMv2 simulations and observations,
normalized by the root‐mean‐square (RMS) of the observed values. All metrics are calculated using the monthly mean model
output and ERA5 reanalysis (i.e., observation) from 1979 to 2014. The y‐axis shows the selected physical quantities,
including surface pressure (PS, unit: hPa), sea level pressure (PSL, unit: hPa), zonal wind (U, unit: m/s) and temperature (T,
unit: K) at bottom model level, 850‐, 500‐ and 200‐hPa pressure levels, as well as the specific humidity (Q, unit: g/kg) at
925‐, 850‐, 500‐ and 200‐hPa pressure levels. The log‐linear interpolation is used to regrid the EAM model output on the
hybrid sigma‐pressure level to pressure‐level, and compared with ERA5 reanalysis on pressure levels. Details of the
simulation setups can be found in Table 1.
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magnitude of 850‐hPa temperature responses in most regions over the globe (Figures 3b and 3d). An exception is
the regions around 30° S and 30° N where a moderate modification on the magnitude of 850‐hPa temperature
changes is observed (e.g., Figure 3c versus Figure 3d). Further analysis indicates that the ML model applies
corrections to the large cold temperature biases over these regions (see. Figures 1d–1f) during the historical
period. Such corrections from the ML model are expected to take effect in the SSP245 and SSP585 simulations as
well. Through non‐linear processes in the atmosphere, the moderate adjustment of the climate change signals in
these regions is not unexpected.

To further study the correction patterns between the present‐day climate and future scenarios, the probability
density functions (PDFs) of monthly temperature and humidity at 850 hPa during 1979–2014 are also plotted and
shown in Figure 4. Consistent with the results in the previous section, we can see that the ML bias correction
adjusts the PDF of CLIM in the present‐day climate toward the PDF of ERA5 reanalysis data (dashed and solid
blue lines vs. gray bars) for both near‐surface temperature and humidity fields. For future climate scenarios,
consistent with the imposed positive radiative forcing associated with the SSP scenarios, both EAMv2 simula-
tions with and without ML bias correction predict warmer 850‐hPa temperatures and higher specific humidity
relative to present‐day conditions (red lines vs. blue lines). Therefore, the physical climate change effects, that is,
shifting toward warmer temperatures, are not erroneously removed as systematic biases by the ML model. More
importantly, the differences between the ML‐corrected future scenarios and present‐day climate (solid blue and
red lines) are very similar to those between the uncorrected data sets (dashed blue and red lines, see also
Figure C2), suggesting that the ML bias correction does not significantly interfere with the PGW‐induced climate
change signals. In fact, we note that the PDFs of T850 and Q850 after ML bias correction (i.e., ML (SSP245) and
ML (SSP585), solid red lines) are also quantitatively closer to the ERA5 global statistics (gray bars), compared
with the uncorrected free‐running simulations (i.e., SSP245 and SSP585, dashed red lines). This implies that the

Figure 3. Differences of air temperature at 850‐hPa (unit: K) between the present‐day and pseudo global warming EAMv2
simulations averaged over the whole simulation period of 1979–2014. Shown are panels (a) SSP245—CLIM and (c) SSP585
—CLIM for EAMv2 simulations without ML bias correction, as well as (b) ML (SSP245)—ML (CLIM) and (d) ML
(SSP585)—ML (CLIM) for EAMv2 simulations with ML bias correction. The dotted regions indicate the differences are
significant with a 95% confidence level. The SSP245 and SSP585 denote two PGW EAMv2 simulations with imposed
climate change perturbations in sea surface temperature (SST) and sea‐ice concentrations (SIC) derived from the CMIP6
historical simulations following SSP2‐4.5 and SSP5‐8.5 future scenarios, respectively. Detailed description on simulations
can be found in Table 1.
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ML bias correction constrains the EAMv2 simulations with corrections of the same sign and similar magnitude in
both present‐day and future climate simulations. For instance, the near‐surface humidity correction shifts the
right‐side tail of the distribution by a similar amount to that seen in the present‐day results (Figures 4b and 4d).
Overall, it is encouraging that the ML model effectively reduces the model biases in large‐scale dynamical and
thermodynamical atmospheric conditions, while introducing insignificant interference on the climate change
signals (or preserving the climate change signals imposed from external forcing).

4. Impact of Bias Correction on Statistics of Extreme Weather Events
In this section, we further discuss the value of ML bias correction for the study of extreme weather events and
their underlying processes in EAMv2. We selected three types of high‐impact weather systems to analyze: at-
mospheric rivers (ARs), ETCs, and tropical cyclones (TCs). The evaluation metrics rely on feature tracking using
the TempestExtremes package (P. A. Ullrich et al., 2021), and are detailed in Appendix C. These three types of
systems are of interest partly because they have the potential to generate extreme weather events, and they operate
at spatial and temporal scales that are largely resolved (e.g., ARs), or under‐resolved (e.g., ETCs and TCs) by low‐
resolution climate models (e.g., EAMv2) at ∼1° horizontal resolution. With analyses of these events, we aim to
demonstrate the value of the ML bias correction for improving simulations and projections of extreme weather
events by typical GCMs.

4.1. Atmospheric Rivers (ARs)

Atmospheric rivers (ARs) are characterized by intense moisture transport, which, upon landfall, can produce
precipitation that can be both beneficial and destructive (Payne et al., 2020). This is because the precipitation rate
is proportional to the convergence of the zonal and meridional moisture transport (model output fields TUQ and
TVQ, respectively) associated with ARs (e.g., Mo et al., 2021). The major features of ARs are reflected by TUQ

Figure 4. Long‐term statistics for monthly mean air temperature (first column, unit: K) and specific humidity (second
column, unit: g kg− 1) at 850‐hPa pressure levels over the whole global domain during the simulation period of 1979–2014.
Shown is the comparison among ERA5 reanalysis (gray bars), uncorrected (dashed lines), and ML‐corrected (solid lines)
EAMv2 simulation for present‐day (blue lines) and future climate scenarios (red lines). The future climate simulations with
SSP2‐4.5 (top row) and SSP5‐8.5 (bottom row) perturbations are shown in the top and bottom rows, respectively. The
detailed descriptions on simulations can be found in Table 1.

Journal of Advances in Modeling Earth Systems 10.1029/2023MS004138

ZHANG ET AL. 9 of 34

 19422466, 2024, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S004138 by C
ochrane G

reece, W
iley O

nline L
ibrary on [11/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



and TVQ, which, as in Equation B5, are directly linked to large‐scale wind and specific humidity. Therefore, the
AR systems are expected to be well simulated by EAMv2 at at ∼1° resolution.

Despite the model being capable of resolving ARs, biases still exist in the simulated ARs. As reported in Kim
et al. (2022), version 1 of the E3SM model overestimates the occurrence frequency and the water vapor transport
of ARs. Therefore, it is worth checking whether EAMv2 with the ML bias correction can reduce these AR biases.
Here, TempestExtremes is employed to track ARs using the 6‐hourly TUQ and TVQ fields derived from the
EAMv2 simulations with and without ML bias correction (see detailed tracking algorithm in Appendix B). The
occurrence frequency of ARs and vertically integrated horizontal water vapor transport (IVT) associated with
ARs are then calculated and shown in Figure 5. We can see that the significant overestimation of IVT in E3SM v1
still exists in the EAMv2 model (Figure 5b), meaning that spurious large moisture transport associated with ARs
persists in both versions of the EAM model. These model biases can introduce biases in the AR‐driven pre-
cipitation in model simulation as found in previous studies (Kim et al., 2022).

With the ML bias correction, the spurious large moisture transports associated with ARs are significantly reduced
in the EAMv2 simulations (Figure 5c). The remaining model biases in the composite IVT field are statistically
insignificant in most regions over the globe. Following Equation B5, such improvements in ARs are obtained
because of the effective bias reductions by the MLmodel in both large‐scale wind and humidity fields (Figures 1h
and 1i). Consistently, the AR annual occurrence frequency also agrees better with ERA5 reanalysis after the ML
bias correction (Figure 5e versus Figure 5f). Note that TempestExtremes uses the Laplacian of IVT instead of an
IVT threshold for AR tracking. Therefore, biases in large‐scale humidity on their own are not responsible for the
AR frequency biases in Figure 5e. The improvements in the occurrence frequency of ARs suggest that the ML
bias correction not only modifies the IVT value at each grid point but also inherently improves the gradient of IVT
simulated by EAMv2.

Figure 5. Top row: distribution of the vertically integrated horizontal water vapor transport (IVT, units kg m− 1 s− 1) from ERA5 reanalysis averaged over all identified
AR events at each grid point during 1979–2014 (panel a), and the model biases in the EAMv2 simulations without (i.e., CLIM, panel b) and with (i.e., ML (CLIM), panel
c) ML bias correction. The AR events and composite IVT are tracked with TempestExtremes using the 6‐hourly TUQ and TVQ data from ERA5 reanalysis and EAMv2
simulations; Bottom row: same as the top row, but for the annual AR occurrence frequency (unit: %) in ERA5 reanalysis (panel d) and the mean biases in CLIM (panel e)
and ML (CLIM) (panel f). The annual frequency of AR is defined as the percentage of the number of time steps (6 hr) a grid point was part of an AR, divided by the total
number of 6‐hr time steps in each year during 1979–2014. The dotted region in panels (b–c and e–f) indicates that the differences between EAMv2 simulation and ERA5
are significant at a 95% significance level.
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Figure 6 further shows the responses of the IVT and occurrence frequency of ARs to the climate change per-
turbations in SSTs and SICs used in the PGW EAMv2 simulations. The differences between SSP245 and CLIM
suggest an increase of the IVT (Figure 6a) and the occurrence of AR events (Figure 6c), which can be explained
by the higher atmospheric humidity associated with warmer temperature as shown in Figure 4. However, cir-
culation changes such as changes in the jet stream and subtropical high‐pressure systems (Kim et al., 2022) likely
also play a role since as noted earlier, ARs are tracked based on the Laplacian of IVT instead of an IVT threshold
so an increase in atmospheric humidity alone does not translate to more frequent AR occurrence. These climate
change signals are also seen in the same pair of simulations with the ML bias correction (ML (CLIM) and ML
(SSP245)), indicating that the bias correction preserves the climate change signals. Compared with the free‐
running E3SM simulations, the ML bias correction results in a weaker increase of IVT and occurrence fre-
quency of AR over the Northeast Pacific and Southern Ocean regions, which is likely due to the correction of ML
on the overestimation of IVT in the E3SM model. Similar responses in the intensity (in terms of IVT) and
occurrence frequency of ARs are also seen in the PGW simulations with stronger imposed climate changes in SST
and SIC (i.e., SSP585), but the magnitudes of change in IVT and occurrence of ARs are more pronounced due to
the stronger external forcing in SST and SIC (Figure C3). Again, the ML bias correction preserves the climate
change signals, while adjusting the strength of the responses in IVT associated with ARs. Overall, the results in
this section suggest that the ML bias correction reduces the systematic model biases in large‐scale wind and
humidity and improves the representation of ARs in EAMv2. Meanwhile, the ML bias correction does not have a
significant impact on the climate change signals associated with ARs derived from the PGW simulations. By

Figure 6. Changes of the vertically integrated horizontal water vapor transport (IVT, units kg m− 1 s− 1, top row) and annual
occurrence frequency of ARs (unit: %) in the EAMv2 simulations with imposed climate change perturbations in sea‐surface
temperature (SST) and sea‐ice concentration (SIC) for the SSP2‐4.5 scenarios. Shown are the differences of SSP245—CLIM
(panels a and c) and ML (SSP245)—ML (CLIM) (panels b and d) for the EAMv2 simulations without and with ML bias
correction, respectively. The composite of IVT is derived using all AR events tracked by TempestExtremes during the
present‐day or pseudo‐global warming period of 1979–2014. The definitions of the annual frequency of AR are the same as
in Figure 5a. The dotted region in panels (b–c and e–f) indicates that the differences are significant at a 95% significance
level.
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eliminating the systematic model biases, the bias‐corrected AR environments provide more reliable information
for downscaling ARs for assessing future changes in precipitation and flood hazards associated with ARs.

4.2. Extratropical Cyclones (ETCs)

Extra‐tropical cyclones (ETCs) are a fundamental part of the atmospheric circulation that modulates the trans-
portation of heat, moisture, and momentum in the mid‐latitudes (Hawcroft et al., 2012; Sinclair et al., 2020). ARs
discussed in the previous section are typically associated with a low‐level jet stream ahead of the cold front of an
ETC. The heavy precipitation and strong winds accompanying ETCs are known to cause extreme weather‐
induced damages in midlatitude regions such as Europe and North America (Fink et al., 2009; Hoskins &
Hodges, 2002).

We begin our discussion by showing the track densities of ETCs that are tracked with TempestExtremes using the
6‐hourly sea level pressure (PSL) model output in the two hemispheres (see detailed tracking algorithms in
Appendix B). The annual ETC storm tracks over the Northern Hemisphere (NH) in ERA5 reanalysis (Figure 7a)

Figure 7. Track density maps for total annual ETCs over the Northern Hemisphere (NH, top row) and Southern Hemisphere (SH, bottom row) tracked in the ERA5
reanalysis (panels a, d) and EAMv2 climate simulations without (i.e, CLIM, panels b, e) and with (i.e., ML (CLIM), panels c, f) ML bias correction. The ETC events and
composite IVT are tracked with the TempestExtremes using the 6‐hourly mean sea level pressure (PSL) data from ERA5 reanalysis and EAMv2 simulations. The warm‐
core tropical‐cyclone‐like vortices were excluded during the feature tracking. The track densities shown are defined as the total number of time steps (6 hr) the ETCs
passed the 8° × 8° grid over the globe at each year from 1979 to 2014. Units are the number of 6‐hourly ETC occurrences per 8° × 8° grid box per year.
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show very clear high track densities over two regions separated by orographic features: the first region extends
from high topography in East Asia (i.e., the Tibetan Plateau and the Altai–Sayan–Stonovoy range) into the
western North Pacific, while the second region extends from the lee of the Rocky Mountains in North America,
across the North Atlantic into Scandinavia and northern Russia. Different from the NH, the annual ETC tracks in
the Southern Hemisphere (SH) show more continuous features with the highest track densities between 50°S and
70°S (Figure 7d). The low‐resolution EAMv2 model produces a good representation of the observed spatial
patterns of ETC track densities in both hemispheres (Figures 7b and 7e). Compared with the free‐running sim-
ulations (i.e., CLIM, Figures 7b and 7e), no significant differences in the ETC track densities are seen in sim-
ulations with the ML bias correction (i.e., ML (CLIM), Figures 7c and 7f). The small differences between ML
(CLIM) and CLIM are likely because the corrections by the ML model on wind and temperature do not lead to
significant adjustments on the derived PSL (see Equation B1). As shown in Figure C4, the systematic model
biases of PSL in CLIM are less than 2‐hPa in most regions over the globe (Figure C4b). Therefore, we will not
expect a strong correction from the ML model in these regions with small PSL biases (Figure C4c). However, the
CLIM simulation indeed reveals large low‐pressure biases in the southern ocean region (50°− 70°S) (Figure C4b),
which is co‐located with the highest ETC track density region over the Southern Hemisphere (Figure 7d). In the
same region, we indeed see a reduction of maximum PSL biases in ML (CLIM) due to the correction by the ML
model (Figure C4c).

The reasonable representation of ETC occurrence in both CLIM and ML (CLIM) enables a fair comparison of
the large‐scale storm environment associated with ETCs through feature‐oriented composite analyses. Figure 8
shows the composited 850‐hPa temperature field, along with analogously calculated composites of 850‐hPa
wind vectors (Figures 8a–8c) and IVT (Figures 8d–8f). ERA5 reanalysis clearly showed the “warm
conveyor belt” feature (e.g., Dettinger et al., 2015) with the advection of warm and moist air wrapping

Figure 8. Composites of meteorological quantities centered on ETC storm center of all filtered storms with mean sea level pressure (PSL) less than or equal to 990‐hPa in
the ERA5 reanalysis (first column) and the differences between EAMv2 simulations and ERA5 reanalysis before (i.e., CLIM, second column) and after (i.e., ML
(CLIM), third column) applying ML bias correction. The top row shows the composite of air temperature (contour, unit: K) and wind (vector, unit: m s− 1) at 850‐hPa
pressure level for (a) ERA5 reanalysis, (b) CLIM—ERA5 and (c) ML (CLIM)—ERA5; the bottom row shows the integrated vapor transport (IVT, unit: g kg− 1) for
(d) ERA5 reanalysis, (e) CLIM—ERA5 and (f) ML (CLIM)—ERA5. All ETCs tracked with 6‐hourly PSL fields during 1979–2014 are included in the composite by
filtering out the storms with centered PSL >990‐hPa. The white (panels a–c) and black (panels d–f) cross markers indicate the center of ETC storms.
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cyclonically around the eastern side of the storm center (Figures 8a and 8d). The CLIM simulation without ML
bias correction shows systematic warm biases and spurious large water vapor transport around the storm center,
suggesting an overestimation of the advection of warm and moist air associated with the ETCs in the model
(Figures 8b and 8e). A sizable cold temperature bias is also pronounced on the north side of the composite
storm (Figure 8b). For ML (CLIM) with the ML bias correction, the biases in the temperature, wind, and vapor
transport are reduced in the composite storms (Figures 8c and 8f), with more significant improvements in the
IVT fields (Figure 8f). This results in a more realistic advection of temperature and humidity associated with
the ETCs in the EAMv2 simulations. We also notice that the ML bias correction produces a weakening of the
westward wind around the storm center (Figure 8d) compared with those in CLIM. This seems to be a physical
response as the corrections on the warm temperature bias around the storm center reduce the west‐to‐east
temperature gradient featured in Figure 8b, leading to an adjustment of wind according to the thermal wind
balance relationship. The results likely suggest that the ML model indeed makes physically meaningful cor-
rections on the EAMv2 simulations.

The responses of the ETC track densities to the future climate change in the Northern Hemisphere (NH) are shown
in Figure 9. The results suggest that climate change with warmer sea surface temperature and lower sea‐ice
concentrations leads to a reduction of the storm track density around the Arctic (Figure 9a). Stronger signals
in the ETC track density responses are observed in the simulations with the higher‐emission climate change
scenario of SSP5‐85 (Figure 9c). In addition, the signals of the ETC track density responses to the climate change
from ML bias corrected simulation (ML (CLIM) (Figures 9b and 9d), highly agree with those from the free‐
running EAMv2 simulations (CLIM, Figures 9a and 9b). Similar conclusions can be drawn for ETC track
density responses over the Southern Hemisphere (SH, Figure C5).

For the responses of the ETC intensity, Figure 10 shows the changes of composited mean sea level pressure (PSL)
fields in response to the imposed climate change perturbations from the SSP2‐4.5 (first row) and SSP5‐8.5
(bottom row) emission scenarios. The results suggest that global warming may favor more intense ETCs as there
is a reduction of the storm center sea level pressure in the EAMv2 simulations of SSP2‐4.5 (Figure 10a) and
SSP5‐8.5 (Figure 10c). Like tropical cyclones, the intensity of ETCs is not expected to be well simulated by the
low‐resolution EAMv2 model as it lacks the resolution to fully resolve the storm dynamics. However, analyses of
the composite large‐scale storm environment suggest that global warming leads to warmer temperatures on the
west side of the storm and increased water vapor transport on the east side of the storm (contour and shading in
Figures 11a and 11c). Meanwhile, there is an enhanced cyclonic circulation in the boundary layer regions (i.e.,
850‐hPa) due to climate change (vectors in Figures 11a and 11c). These changes in the storm environment suggest
enhanced warm and moist air advection wrapping cyclonically around the storm center, favoring the development
and formation of more intense ETCs, consistent with the sea level pressure changes.

The climate change signals in the ETC intensity and storm environment from the EAMv2 simulations with ML
bias correction largely agree with those in the free‐running PGW simulations for both SSP2‐4.5 and SSP5‐8.5.
This was concluded by viewing the responses of ETC‐composited PSL (Figure 10) and large‐scale circulation and
moisture transport at 850‐hPa pressure level (Figure 11). Again, this suggests that the ML bias correction pre-
serves the climate change signals associated with ETCs. However, different from the ETC track density, the ML
bias correction shows noticeable impacts on the magnitude of the responses of the ETC intensity and storm
environment to climate change. Specifically, the responses of PSL to the perturbations of SSP2‐4.5 and SSP5‐8.5
become weaker after applying the ML bias correction (Figures 10b and 10d), compared with those in free‐running
simulations (Figures 10a and 10c). Accordingly, a weaker change of the temperature and water vapor transport is
also evidenced in the simulations with ML bias correction (Figures 11b and 11d versus Figures 11a and 11c). The
modifications of the ML bias correction on the climate change signals are likely reasonable. As shown in
Figure C1, the EAMv2 model significantly overestimates the humidity over the ETC active regions (e.g., 50–
70°S), which likely explains the significant overestimation of the composite water vapor transport in Figure 8e.
The effective corrections by theMLmodel on these biases tend to reduce the model‐simulated humidity and water
vapor transport associated with ETCs. Such corrections from the ML model are also expected to take effect in the
ML (SSP245) and ML (SSP585) simulations. Also noteworthy is that the ML bias correction preserves the
physical relationships between the storm environment and storm intensity, both showing smaller changes in the
future compared to the changes simulated without bias correction.
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4.3. Tropical Cyclones (TCs)

Tropical cyclones (TCs) are low‐pressure systems that typically form in lower‐latitude regions, which can cause
some devastating and widespread geophysical hazards in the global tropics and subtropics. Previous studies have
evaluated the frequency and distribution of TCs in an earlier version of the EAMmodel at∼100 km resolution and
found that the model significantly underestimates the occurrence frequency and intensity of TCs (Balaguru
et al., 2020). The same conclusions can be drawn for the low‐resolution EAMv2 simulations in our study (see
Figure C6 in Appendix). Therefore, direct evaluation of TempestExtreme‐derived metrics for TCs provides

Figure 9. Responses (Δ) of annual ETC track densities over the North Hemisphere (NH) to the imposed climate change
perturbations in sea‐surface temperature (SST) and sea‐ice concentration (SIC) for the SSP2‐4.5 (top row) and the SSP5‐8.5
scenarios (bottom row). Shown are the differences of SSP245—CLIM (panel a), SSP585—CLIM (panel c) for the EAMv2
simulations without ML bias correction, as well as ML (SSP245)—ML (CLIM) (panel b) and ML (SSP585)—ML (CLIM)
(panel d) for the EAMv2 simulations and with ML bias correction. All ETCs with mean sea level pressure (PSL) less than or
equal to 990‐hPa are included for the metrics. The ETCs are tracked with 6‐hourly PSL fields from EAMv2 simulations from
1979 to 2014. The annual track density is defined as the total number of time steps (6 hr) the ETCs passed over an 8°× 8° grid
box per year. The dotted region indicates that the differences are significant at a 90% significance level.
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limited value to conclude the impacts of the ML bias correction model. In this section, we instead focus on the
evaluation of large‐scale environmental conditions that are key drivers governing TC formation and development.
These large‐scale storm environments usually operate on the order of tens of thousands of kilometers that can be
resolved by the EAMv2 model.

Figure 12 shows the climatological seasonal mean TC cyclone genesis potential index (GPI), potential intensity
(PI), and vertical wind shear between 200 and 850 hPa. Here, the GPI and PI are defined using the large‐scale
vorticity, vertical wind shear, potential intensity, and humidity fields following Camargo et al. (2007) (also
see discussion in Appendix B). The differences between CLIM and ERA5 in terms of the GPI and low‐level wind
shear (Figures 12b and 12h) are systematically reduced over most of the TC basins when the ML bias correction is
applied to the U, V, T, and Q fields (Figures 12c and 12i). AlthoughML (CLIM) relative to CLIM produces larger
biases in PI over the tropical Indian and western Pacific Ocean regions within 5°S − 5°N,ML (CLIM) with bias
correction (Figure 12f) effectively reduced the significant positive biases of PI in CLIM (Figure 12e) over the
regions with maximum track densities (see Figure C6b). Overall, we conclude that ML bias correction shows the
potential to improve the representation of large‐scale storm environments associated with TCs in the low‐
resolution EAMv2. Further analysis from Equation B7 suggested that these improvements are possibly due to
the bias reduction in large‐scale U, V, T, and Q fields with the ML bias correction. In addition, the CLIM

Figure 10. Responses (Δ) of the composite mean sea level pressure (PSL, unit: hPa) centered on the ETC storm center of all
filtered storms in EAMv2 future climate simulations following SSP2‐4.5 (first row) and SSP5‐8.5 (second row) emission
scenarios. The Δs are derived by subtracting the composite PSL in SSP245 and SSP585 simulations from the CLIM
simulations. All ETCs tracked with 6‐hourly PSL fields during 1979–2014 are included in the composite by filtering out the
storms with centered PSL >990‐hPa. The white cross markers (panels a–d) indicate the center of ETC storms.
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simulation, as shown in Figure 12h, features a noticeable overestimation of wind shear over tropical eastern
Pacific and Atlantic ocean regions. This could also partly account for the significant underestimation of TC track
densities over the Northeast Pacific and North Atlantic basin (Figure C6b versus Figure C6a) because the activity
of the tropical easterly waves over tropical eastern Pacific and Atlantic oceans are known as key drivers for TC
genesis. Interestingly, the biases in wind shear over these two regions in CLIM are significantly reduced in ML
(CLIM) after applying the ML corrections (Figure 12i).

To demonstrate if the ML corrections on large‐scale wind indeed lead to changes in TC activities, we employ the
Risk Analysis Framework for Tropical Cyclones (RAFT, W. Xu et al., 2021) for a complementary assessment.
The TC track model of RAFT is used to simulate TC track density given the climatological steering winds.

Figure 11. Same as Figure 10 but for responses (Δ) of temperature (blue contours, unit: K) and wind (black vectors) at 850‐
hPa pressure level as well as the vertically integrated vapor transport (IVT, unit: kg m− 1 s− 1) to climate change following
SSP2‐4.5 (first row) and SSP5‐8.5 (second row) emission scenarios. See Table 1 for a detailed description of EAMv2
simulations.
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Comparison of the TC track density produced by RAFT as driven by EAMv2 simulated steering winds with and
without ML bias correction provides an assessment of the large‐scale TC environment in the simulations.
FollowingW. Xu et al. (2021), we used the 6‐hourly large‐scale wind fields (i.e. U and V) at 200‐hPa and 850‐hPa
from ERA5 reanalysis, CLIM, and ML (CLIM) to generate three sets of synthetic TC tracks with RAFT,
respectively. We hypothesize that the synthetic tracks should agree better with those obtained with ERA5
reanalysis if the ML bias correction improves the large‐scale wind fields.

Figure 13 shows the annual mean TC track density over the Atlantic basin from the RAFT forecast. Compared to
CLIM (Figure 13b), ML (CLIM) shows a better agreement with ERA5 reanalysis, with a clear reduction of track

Figure 12. First column: Seasonal mean tropical cyclone Genesis Potential Index (GPI, unitless, panel a), potential intensity (PI, unit: m s− 1, panel d), and vertical wind
shear between 200 and 850 hPa (unit: m s− 1, panel g) from ERA5 reanalysis averaged from 1979 to 2014; Second column: bias in GPI (panel b), PI (panel e) and 200–
850 hPa vertical wind shear (panel h) in the EAMv2 simulation without ML bias correction (i.e., CLIM—ERA5); Third column: the same as the second column but for
the EAMv2 simulations with ML bias correction (i.e., ML (CLIM)—ERA5, panels c, f, i). The monthly mean model output from ERA5 reanalysis and EAMv2
simulations are used to calculate the GPI, PI, and vertical wind shear following Equation B7. For all panels, the seasonal mean values are computed for August to
October in the Northern Hemisphere and for January to March in the Southern Hemisphere. Detailed description of EAMv2 simulations can be found in Table 1.
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Figure 13. Annual mean TC track density over the Atlantic basin from RAFT forecast driven by the large‐scale
environmental wind fields from ERA5 reanalysis (panel a), and the differences in track densities between RAFT forecasts
driven by ERA5 and EAMV2 simulations (panels b–c), and by EAMv2 simulations in present‐day and pseudo‐global
warming scenarios (panels d–f), respectively. Panels (b–c) show the CLIM—ERA5 (panel b) and ML (CLIM)—ERA5
(panel c) for present‐day EAMv2 simulations without and with ML bias correction, respectively. Panels (d–g) show the
SSP245—CLIM (panel d) and SSP585—CLIM (panel f) for EAMV2 simulations without ML bias correction, as well as ML
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density biases (Figure 13c). The basin mean track density biases are reduced by more than 50% percent as shown
by the numbers on the top right corner in Figures 13b and 13c). These results validate our hypothesis as discussed
above, and demonstrate that the ML bias correction improves the RAFT TC track forecasts and thus the
downscale analysis of the statistics of TC track densities. Similar track density forecasts from RAFT are also
generated for EAMv2 PGW simulations with and without ML bias correction. As shown in Figures 13d and 13f,
the climate‐change‐induced changes in the large‐scale wind fields led to a significant increase in the number of
TCs over the Atlantic Basin region, especially in the coastal regions over the eastern U.S. These climate change
signals, which have been linked to the warmer SSTs over the eastern tropical Pacific Ocean under warming
(Balaguru et al., 2023) (also seen in Figures A1a and A1b), are still seen in the simulations after applying the ML
bias correction (Figures 13e and 13g), suggesting that the ML bias correction on the large‐scale wind fields
preserves the climate change signals and the associated TC track responses as seen in the free‐running simula-
tions. Moreover, we observe differences in the magnitude of the responses of TC track density over Eastern US
coastal and Gulf of Mexico coastal regions before and after ML bias correction (Figures 13e and 13g versus
Figures 13d and 13f). This reflects the impact of ML bias correction on the RAFT forecasts and the associated TC
track responses through modifications on the large‐scale wind fields in EAMv2 simulations. As the ML bias
correction produces a more reliable representation of large‐scale wind fields in EAMv2, higher confidence could
be given to the results drawn from Figures 13e and 13g. Overall, the improved representation of large‐scale storm
environments (e.g., large‐scale wind) by ML bias correction is beneficial for obtaining a more reliable down-
scaling of high‐impact weather systems such as TCs.

5. Conclusions
Bias correction has been a commonly used approach when applying climate model outputs to impact studies. This
study employed a machine‐learning‐based (ML) bias correction approach to improve the representation of the
large‐scale wind (U, V), temperature (T), and humidity (Q) in the climate simulations conducted with DOE's
E3SM Atmosphere Model (EAM). The performance of the ML bias correction method in producing large‐scale
storm environments associated with high‐impact weather systems is evaluated for both present‐day (i.e., his-
torical) and climate change scenarios.

Globally, the results show that the ML bias correction method performs well in reducing the overall biases in U,
V, T, and Q fields from the climate model simulations. Compared with the wind fields, more promising cor-
rections are found in the thermodynamical fields (i.e. T and Q), especially in the tropics and midlatitude regions
and over the lower troposphere (see Figures 1 and C1). As reported in previous studies (S. Zhang et al., 2022),
biases are more pronounced in these fields compared to the winds. Therefore, there is more room for these larger
biases to be corrected during training for these fields compared to winds. When looking at the mean values (global
and regional means), bias correction is very efficient at removing the biases in all fields at most model levels, with
a systematic bias reduction of 10%–20% quantitatively (Figure 2). The same ML bias correction approach is then
applied to process the PGW simulations from EAMv2 forced with the imposed climate change perturbations in
sea surface temperature (SST) and sea‐ice concentration (SIC) derived for the future climate scenarios of SSP2‐
4.5 and SSP5‐8.5. The ML bias correction is found to constrain the probability distribution function (PDF) of the
large‐scale model state variable in historical simulations toward a better agreement with the observations. Similar
shifting of the PDFs by ML bias correction is also seen in the PGW simulations, while the large‐scale climate
change signals of the model state (e.g., temperature and humidity) are well preserved before and after the ML bias
correction (see Figure 4).

This study further demonstrated the value of the employed ML bias correction in the assessment of high‐impact
weather systems that have the potential to generate extreme weather events. We used the model state of U, V, T,
and Q with and without ML bias correction in the low‐resolution EAM model to derive the long‐term statistics,

(SSP245)—ML (CLIM) (panel e) and ML (SSP585)—ML (CLIM) for EAMv2 simulations with ML bias correction. The
SSP245 (orML (SSP245)) and SSP585 (orML (SSP585)) are two PWG simulations with imposed climate change perturbations
in sea surface temperature and sea‐ice concentrations derived for SSP2‐4.5 and SSP5‐8.5 future climate scenarios. More
detailed descriptions of simulations can be found in Table 1. The 6hourly zonal wind (U) and meridional wind (V) at 200 and
850 hPa during 1979–2014 from ERA5 reanalysis and EAMv2 simulations are used to drive RAFT TC track forecasts following
W. Xu et al. (2021). The annual track density is defined as the total number of 6‐hourly tracks that pass through a 4° × 4° grid
box per year. The gray dots in panels b and c indicate the differences are significant at a 95% confidence level.
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and evaluated the skills of bias correction in improving the model representation of the high‐impact weather
systems (e.g., occurrence frequency, intensity, and storm environment, etc.) in both present‐day and PGW sce-
narios, with a focus on atmospheric rivers (ARs), ETCs and tropical cyclones (TCs). The results show that the
large‐scale vapor transport associated with ARs is more realistically represented in the bias‐corrected data sets
than those without bias correction, leading to a better representation of the occurrence frequency and the strength
of ARs in the EAM model (see Section 4.1). Similarly, more realistic representations of ETC structure and ETC‐
induced changes in water vapor transport and thermodynamical flows are also obtained in the simulations with
ML bias correction (see Section 4.2). When the ML bias‐corrected large‐scale winds are used to drive a TC track
forecast model for downscaling analysis of TC activities over the Atlantic basin, the resulting TC track forecasts
agree better with the results driven by observations (see Section 4.3). In addition, the ML bias correction does not
significantly change the patterns of the responses of occurrence frequency and intensity of the three types of
extreme events to pseudo‐global warming effects, but there are obvious differences in the magnitude of the re-
sponses before and after the ML bias correction. Analysis of the ETC response to climate change shows that the
ML bias correction preserves the physical relationship between the storm environment and storm intensity.
Overall, the findings in this study suggest that the proposed machine learning bias correction is a useful approach
to facilitate the downscaling of high‐impact weather systems for low‐resolution climate models by providing
more realistic large‐scale environment information.

While the proposed ML bias correction was demonstrated to be effective in the assessment of high‐impact
weather systems in the low‐resolution EAMv2 climate models, some limitations of the current setup should be
stated. First, as mentioned in Section 2.3, the ML model employed in this study for bias correction acts on the
coarse‐resolution climate model simulation in a postprocessing manner. The goal of such debiasing process was
to bring the climate statistics of quantities predicted by the coarser‐resolution numerical model into better
agreement with the reference as quantified by the ERA5 data set. Therefore, our ML bias approach is not expected
to correct biases in the dynamics of the model system. Nevertheless, the offline ML bias correction proposed in
our study can be potentially combined with an online bias correction approach targeting direct corrections on the
model dynamics to derive more optimal bias reduction for coarser‐resolution climate model predictions. Second,
the ML bias correction in this study was only applied to improve the statistics of large‐scale model state variables,
namely U, V, T, and Q fields. The ability of the ML approach to bias correct other physical quantities such as
precipitation and radiative fluxes and to preserve the physical consistency and conservation laws of mass and
energy has not been explored and discussed. However, the results of this study have demonstrated that our ML
model is in a good position for further exploration of these issues. Lastly, ML bias correction was currently trained
and verified only for the EAMv2 climate model. Applying the ML approach to correct other weather and climate
models could be possible with retraining, but this has not been tested and verified. Future work will focus on
addressing the limitations of our ML bias correction model as mentioned here and exploring the potential
application of our ML architecture to other weather and climate models. We will report our findings in separate
publications.

Appendix A: Supplementary Material for Section 2
A1. Additional Tables and Figures for Section 2.2

A2. Machine Learning Framework

The machine learning model for bias correction in Section 2.2 utilizes the same convolutional‐LSTM hybrid
neural network (NN) architecture described in Barthel Sorensen et al. (2024). The network takes as its input the
snapshots of the entire horizontal discretization of all prognostic variables (i.e. U, V, T, Q) at a single sigma level
of the EAMv2 model. Afterward, a custom ”split” layer separates the input into non‐overlapping subregions.
Then, each subregion is independently passed through a series of convolutional layers tasked with extracting local
flow features. Afterward, the local information extracted from each subregion is concatenated in a single vector
via a custom “merge” layer and projected onto a reduced order latent space via a linear fully connected layer. This
latent space representation is then fed through an LSTM layer before being projected back to physical space via
another linear fully connected layer. In addition, global information is split into the same subregions of the input,
and distributed to a series of independent deconvolution layers that upscale the data to the original resolution.
Finally, a custom “merge” layer gathers the information from each subregion and produces the final corrected
snapshot. The mathematical framework and algorithms for the machine learning operator are introduced below.
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Consider a coarse discretization of a dynamical system, in this case the
EAMv2 model, describing the evolution of the vector quantity v

v̇ = f (v). (A1)

The high fidelity reference solution, in this case ERA5 data, is represented by
u. The objective of the ML framework we employ is to capture the long term
statistics of u by solving the imperfect model (Equation A1) and then applying
a correction operator, G, to that computed solution.

An ML model naively trained a pair of arbitrary trajectories (v, u) is unlikely
to generalize as it will be corrupted by the effects of chaotic divergence.
Chaotic divergence is the inherent property of all turbulent systems that any
two trajectories, which may initially be arbitrarily close, will eventually
diverge—making a mapping between them meaningless. To minimize this
effect the correction operator, G is trained not on an arbitrary pair of trajec-
tories but specifically on the pair (vτ, u) where vτ is the solution to the coarse
model nudged toward the reference data,

v̇τ = f (vτ) −
1
τ
(vτ − Pu). (A2)

Here P is an operator which projects the reference solution onto the coarse
grid. The constant τ is a user‐defined parameter that represents the timescale
over which the nudging tendency acts. While this value is chosen such that the
nudging term is smaller than all others, it still creates small discrepancies
between the spectra of the nudged solution, vτ, and the free coarse solution, v.
If left unaddressed this discrepancy will hinder the ability of the machine‐

learned map G to generalize to free‐running data. To remedy this issue the spectrum of the nudged trajectory,
vτ is rescaled to match the spectrum of the free‐running coarse model.

Specifically, let q̂k = F[q] be the spatial Fourier transform of an arbitrary field q. The spectral energy is then
defined as

Ek,q =
1
T
∫

T

0
|q̂k|

2dt, (A3)

and the energy‐ratio between v and vτ is defined as

ak ≡

̅̅̅̅̅̅̅̅̅
Ek,v
Ek,vτ

√

(A4)

The spectrum‐matched nudged solution is then defined as the inverse Fourier transform of the spectrally rescaled
nudged solution:

v′τ = F− 1 [akv̂k,τ]. (A5)

Training the correction operator then reduces to a supervised learning problem with an objective function

minG∫
T

0
‖G[v′τ(t)] − u(t)‖2dt. (A6)

After the correction operator, G, is trained on the spectrally corrected nudged data, during testing it is applied to
the free run coarse model trajectory v(t). The resulting corrected trajectory constitutes our ML prediction and is

Table A1
List of CMIP6 Models Used to Derive the Imposed Climate Change
Perturbations in Sea Surface Temperature (SST) and Sea Ice Concentrations
(SIC) for Psedo Global Warming Simulations in Table 1

CMIP6 institution CMIP6 model

AWI AWI‐CM‐1‐1‐MR

BCC BCC‐CSM2‐MR

CAMS CAMS‐CSM1‐0

CAS FGOALS‐f3‐L

CCCma CanESM5

CNRM‐CERFACS CNRM‐CM6‐1

EC‐Earth‐Consortium EC‐Earth3

IPSL IPSL‐CM6A‐LR

MIROC MIROC‐ESM

MOHC UKESM1‐0‐LL

MRI MRI‐ESM2‐0

NCAR CESM2

NCC NorESM2‐LM

NOAA‐GFDL GFDL‐CM4

NUIST NESM3

Note. The monthly mean model output of “tos” (SST) and “siconc” (SIC)
from the “r1i1p1f1” experiment conducted for “SSP24‐5” and “SSP58‐5”
scenarios were extracted and used.

Journal of Advances in Modeling Earth Systems 10.1029/2023MS004138

ZHANG ET AL. 22 of 34

 19422466, 2024, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S004138 by C
ochrane G

reece, W
iley O

nline L
ibrary on [11/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



then used to compute statistics and other properties of interest. We refer the interested reader to Barthel Sorensen
et al. (2024) for a more detailed discussion of the mathematical framework and network architecture.

Appendix B: Additional Notes for Section 2.4 and Section 4
Section 4 discussed three high‐impact weather systems, including atmospheric rivers (ARs), ETCs, and tropical
cyclones (TCs). Table B1 documents the feature tracking information used to derive the metrics for discussions.
The TempestExtremes package (P. A. Ullrich et al., 2021) was employed for feature detection and tracking of
these weather phenomena using the 6‐hourly model output from EAMv2. Specifically, the TCs and ETCs were
tracked with mean sea level pressure (PSL), while the ARs were tracked with two components of integrated water
vapor flux (TUQ and TVQ). In this paper, the same algorithm and parameter setups described in P. A. Ullrich

Figure A1. Changes of annual mean sea surface temperature (SST, unit: K, panels a, c) and sea‐ice concentration (SIC, unit:
%, panels b, d) in response to the forcing pathways of SSP2‐4.5 (top row) and SSP5‐8.5 (bottom row) from CMIP6 coupled
model simulations. Shown are the multi‐model ensemble mean climatological differences averaged over the 15 models listed
in Table A1. The climatological differences are computed with the output from coupled historical simulations during 1991–
2010 and future climate simulations during 2041–2060. More detailed descriptions on the simulations and models in
Table A1 can be found in Eyring et al. (2016) and O'Neill et al. (2016).

Table B1
List of Extreme Weather Events and Model Variables Used for Feature Tracking by the TempestExtremes Package

Feature events Short name Feature quantity EAM output

Tropical cyclones TCs Mean sea level pressure (PSL) U, V, T, Q, PS

Extratropical cyclones ETCs Mean sea level pressure (PSL) U, V, T, Q, PS

Atmospheric rivers ARs Integrated Vapor Transport (IVT) U, V, Q

Note. The EAM model output used to derive the feature quantities is listed in the fourth column. See context in Appendix C
for details.
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et al. (2021) were used by TempestExtremes for feature tracking of each extreme weather event in EAMv2
simulations:

• For TCs, our configuration for TempestExtreme identifies the features on the grid points that have both a PSL
minimum and an upper‐level warm core. Specifically, the candidate model grid points are first identified and
tagged by minima in PSL and then eliminated if a more intense minimum exists within a great‐circle distance
(CGD) of 6°. The closed contour criteria are then applied, requiring an increase in SLP of at least 2 hPa within
5.5° GCD of the candidate node, and the average temperature over 200‐ and 500‐hPa pressure levels must
decrease by 0.6 K within 5.5° GCD of the node within 1° CGD of the candidate with maximum air tem-
perature. Meanwhile, the maximum magnitude of the vector wind at 10 m altitude (estimated with the wind
fields at the bottom model level of EAMv2) within 2° GCD of the candidate, and the surface height at the
candidate point was also identified and output by TempestExtreme. All threshold values selected here for TC
feature tracking are based on Table 1 in Zarzycki and Ullrich (2017). After identifying TC candidates on each
time slice (i.e., 6 hr), the “stitching” step in the TempestExtremes (P. A. Ullrich et al., 2021) was further
employed to ensure that the identified features can be sufficiently classified as tropical storms: the wind
magnitude (derived from the wind fields at bottom model level) must be greater than 10 m s− 1 for at least 10
time‐slices, the latitude of the feature must be between 50°S and 50°N for at least 10 time‐slices (i.e.,
60 hours), the feature must exist at an elevation below 150 m for at least 10 time‐slices, and the maximum
distance between feature candidates are of 8.0° GCD. In addition, we only kept the TC candidates that persist
for at least 24 hr with a maximum gap size of 6 hr for evaluation and analysis in Section 4.

• For ETCs, our configuration for TempestExtreme identified the features on the grid points with PSL minima
and the minimum PSL must be enclosed by a closed contour of 2 hPa within 5.5° GCD of the feature center.
Unlike the TCs, ETCs do not have a unique warm core structure. Therefore, the above‐mentioned TC warm
core structure criteria defined with average temperature over 200‐ and 500‐hPa pressure levels were applied to
exclude the TCs from the tracked ETC candidates. During the “stitching” step, we further filter the tracked
feature candidates with the following criteria: the feature must exist at an elevation below 1500 m for at least 8
time‐slices (i.e., 48 hours), and the maximum distance between feature candidates is of 6.0° GCD. In addition,
we only kept the ETC candidates that persist for at least 60 hr with a maximum gap size of 18 hr for evaluation
and analysis in Section 4.

• For ARs, our configuration for TempestExtreme first calculated the Laplacian of the IVT field using eight
radial points at a 10° GCD from each candidate model grid point. Following McClenny et al. (2020), the
feature of AR was then identified and tagged on the grid points where the Laplacian of the IVT field is below a
fixed threshold of − 4 × 104 kg m− 2 s− 1 rad− 2. Finally, we removed the features too near the Equator and those
that are deemed too small using filtering criteria typically used for AR trackers (Shields et al., 2018): each blob
must have a minimum area of 4 × 105 km2, and the latitude of each tagged grid point must be at least 15°. The
grid points belonging to a tropical cyclone identified in the first item were also excluded from the ARs.

With the feature tracking algorithms described above, 6‐hourly TC, ETC track forecasts with a similar format as
National Hurricane Center's HURDAT2 database (Landsea & Franklin, 2013), and 6‐hourly AR mask data on the
1.5° × 1.5° global lat‐lon grid will be obtained for EAMv2 simulations in Table 1. These tracking results were
used to derive occurrence frequency metrics for ARs (Figure C3, Figures 5 and 6), ETCs (Figure C5 and Figures 7
and 9) and TCs (Figure C6) and ARs as shown in Section 4 and Appendix A1. This was achieved by binning the 6‐
hourly TCs and ETC track data into a selected bin (described in the captions of each figure), or directly calculating
the counts with the AR mask data. In addition, the “NodeFileCompose” function built in TempestExtreme was
employed for composite analysis and metrics for ETCs shown in Figures 8, 10, and 11. Specifically, the
NodeFileCompose first projects the model fields (e.g., wind, temperature, etc.) onto the stereographic plane
centered on the ETC track to form a storm‐centered snapshot for each field at each time slice (6 hr). The composite
of each field is then derived by averaging all 6‐hourly snapshots generated at the first step. More detailed de-
scriptions and verifications on the composite analysis method can be seen in P. A. Ullrich et al. (2021), and the
specific rules for the composite analysis in our study are also described in the captions under Figures 8, 10, and 11.

In addition, as the ML bias correction was applied to U, V, T, and Q at each grid point and model level, the feature
tracking quantities, including PSL and IVT in this study were diagnosed offline for simulations with and without
ML bias correction listed in Table 1. Specifically, the PSL was diagnosed with the algorithm proposed by the
European Center for Medium‐Range Weather Forecasts (ECMWF, Trenberth et al., 1993):
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PSL =
⎧⎨

⎩

PS, if Zs ≤ 1e− 4 m

PS e
Zs
RdTs
(1− x

2+
x2
3)
, otherwise

(B1)

where,

x =

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, if Ts > 290.5 K and T0 > 290.5 K
Rd
g
(290.5 − Ts)

Ts
, if Ts ≤ 290.5 K and T0 > 290.5 K

Rd
g
Γ0Zs
Ts

, otherwise

(B2)

T0 = Tb[1 +
RdΓ0
g
(
PS
Pb
− 1)] + Γ0Zs (B3)

Ts = Tbot [1 +
RdΓ0
g
(
PS
Pb
− 1)], where (B4)

Ts =

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ts + 290.5
2

, if Ts > 290.5 K and T0 > 290.5 K

Ts + 255.0
2

, if Ts < 255.5 K

Here, Ps and Zs are surface pressure and Geopotential height, respectively. Tbot and Pbot are air temperature and
pressure at the bottom model level, respectively. These quantities are directly from the model output of simu-
lations in Table 1. Γ0 (=6.5e

− 3 K m− 1) is the temperature lapse rate. Rd and g denote the dry air gas constant and
gravitational acceleration, respectively.

Moreover, the water vapor transport in the atmosphere consists of the eastward (TUQ) and northward (TVQ)
components, which were derived directly with the U, V, and Q from the model output using:

TUQ =
1
g
∫

Pt

Ps
UQ dP (B5)

TVQ =
1
g
∫

Pt

Ps
VQ dP (B6)

where dP is layer thickness, and the integral was computed from surface (i.e., Ps) to top model level (i.e., Pt) at
∼0.2 hPa.

Finally, the cyclone genesis potential index (GPI), and potential intensity (PI) shown in Figure 12 are defined
using the large‐scale vorticity, vertical wind shear, potential intensity, and humidity fields following (Camargo
et al., 2007):

GPI = 105η
3
2(
H700

50
)

3

(
Vpot
70
)

3

(1 + 0.1Vshear)− 2 (B7)

where η is the absolute vorticity at 850 hPa in s− 1, H700 is the relative humidity at 700 hPa in percent, Vpot is the
potential intensity (PI) computed with the method proposed by (Emanuel, 2000; Knutson et al., 2013). The unit of
PI is in m s− 1. Vshear is the magnitude of the vertical wind shear between 850 and 200 hPa in m s− 1.
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Appendix C: Additional Tables and Figures
This section contains supplemental figures used for discussions in Section 3 and Section 4.

Figure C1. First column: Distribution of annual mean zonal velocity (U850, unit: m s− 1, panel a), temperature (T850, unit: K, panel d) and specific humidity (Q850, unit:
g kg− 1, panel g) at 850‐hPa pressure level from ERA5 reanalysis averaged over 1979–2014; Second and Third columns: the same as in first column, but for biases (with
respect to ERA5 reanalysis) in U850 (panels b–c), T850 (panels e–f), and Q850 (panels h–i) from EAMv2 simulations without (i.e., CLIM, second column) and with
(i.e., ML (CLIM), third column) bias correction. The numbers on the top right of panels in the second and third columns denote the global mean root‐mean‐square errors
(RMSE). The log‐linear interpolation is applied to map the EAMv2 data on the hybrid sigma‐pressure level into pressure level, and to be compared with ERA5
reanalysis. Details of the simulation setups can be found in Table 1.
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Figure C2. Probability Density Function (PDF) of monthly mean temperature (ΔT, unit: K, panel a) and humidity (ΔQ, unit:
K, panel b) differences between present‐day and pseudo global warming simulations conducted with EAMv2. Shown are the
SSP245–CLIM (dashed blue line) and SSP585–CLIM (dashed red line) for EAMv2 simulations without ML bias correction,
as well as ML (SSP245)–ML (CLIM) (solid blue line) and ML (SSP585)–ML (CLIM) (solid red lines) for EAMV2
simulations with ML bias correction. The monthly mean data from each simulation during the 1979–2014 period were used
to derive the metrics. The detailed descriptions of simulations can be found in Table 1.

Figure C3. Same as Figure 6, but for the pseudo global warming simulations conducted with EAMv2 using imposed climate
change perturbations in SST and SIC derived from SSP5‐8.5 future scenarios.
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Figure C4. Horizontal distribution of mean sea level pressure averaged from 1979 to 2014 from ERA5 reanalysis (panel a),
and mean model biases in EAMv2 free‐running simulations without (i.e CLIM, panel b) and with (i.e., ML (CLIM), panel c)
ML bias correction. The dotted regions in panels (b, c) indicate the differences between the model and ERA5 reanalysis are
significant at a 95% significance level.
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Figure C5. Same as Figure 9 but for the responses of ETC track density to imposed climate change perturbations in sea
surface temperature (SST) and sea‐ice concentration (SIC) from SSP2‐4.5 (top row) and SSP5‐8.5 (bottom row) over
Southern Hemisphere.
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Data Availability Statement
The source code for EAMv2 (E3SM Project, 2021) used for simulations in this study was obtained from the
Energy Exascale Earth System Model project, sponsored by the U.S. Department of Energy, Office of Science,
Office of Biological and Environmental Research. The TempestExtremes package used for feature tracking of
extreme weather events was extracted from the Github at https://github.com/ClimateGlobalChange/tempest-
extremes (P. Ullrich, 2022), and the user guide for this package can be found at https://climate.ucdavis.edu/
tempestextremes.php (P. A. Ullrich et al., 2021). The CMIP6 data used to derive the climate change perturbations
of sea surface temperature (SST) and sea‐ice concentration (SIC) are available at https://esgf‐node.llnl.gov/
projects/cmip6/ (Eyring et al., 2016; O’Neill et al., 2016). The ERA5 reanalysis data used for machine learning
training and evaluation in this study are available at the Copernicus Climate Change Service (C3S) Climate Data
Store via https://doi.org/10.24381/cds.bd0915c6 (Hersbach et al., 2020). The scripts and post‐processed data for
the analyses in this study can be found on Zenodo at https://zenodo.org/doi/10.5281/zenodo.11053624 (S. Zhang
& Charalampopoulos, 2024).

References
Angélil, O., Perkins‐Kirkpatrick, S., Alexander, L. V., Stone, D., Donat, M. G., Wehner, M., et al. (2016). Comparing regional precipitation and
temperature extremes in climate model and reanalysis products. Weather and Climate Extremes, 13, 35–43. https://doi.org/10.1016/j.wace.
2016.07.001

Balaguru, K., Leung, L. R., Van Roekel, L. P., Golaz, J.‐C., Ullrich, P. A., Caldwell, P. M., et al. (2020). Characterizing tropical cyclones in the
energy exascale earth system model version 1. Journal of Advances in Modeling Earth Systems, 12(8), e2019MS002024. https://doi.org/10.
1029/2019MS002024

Balaguru, K., Xu, W., Chang, C.‐C., Leung, L. R., Judi, D. R., Hagos, S. M., et al. (2023). Increased U.S. coastal hurricane risk under climate
change. Science Advances, 9(14), eadf0259. https://doi.org/10.1126/sciadv.adf0259

Figure C6. Top row: track density maps for tropical cyclones (TCs) tracked in ERA5 reanalysis (panel a) and EAMv2 free‐running simulations without (i.e., CLIM,
panel b) and with (i.e., ML (CLIM), panel c) ML bias correction. The 6‐hourly sea level pressure (PSL) data from 1979 to 2014 are used to track the TC‐like vortices at
each model grid using the TempestExtremes. The TC track density is defined as the average number of 6‐hourly TC track locations within a 4° × 4° grid box per year.
Bottom row: Climatological mean distribution of the TC numbers fall into the Saffir‐Simpson wind scale (d) and the normalized probability distribution function (PDF)
of the 10‐m maximum wind speed (e) in IBTrACS observations (gray colored bars) and EAMv2 simulations without (brown colored bars and lines) and with (green
colored bars and lines) ML bias correction. The x‐axis in panel (d) corresponds to the Saffir‐Simpson wind scale: TS, tropical storm (17.5–32 m s− 1); Cat1, Category 1
(33–42 m s− 1); Cat2, Category 2 (43–49 m s− 1); Cat3, Category 3 (50–58 m s− 1); Cat4, Category 4 (59–69 m s− 1); Cat5, Category 5 (>69 m s− 1). The IBTrACS refers to
the International Best Track Archive for Climate Stewardship, which contains the TC track and intensity data in historical observations. The statistics in panels (d–e) are
obtained with 6‐hourly data from 1979 to 2014.

Acknowledgments
The authors thank George Karniadakis
(Brown University) for valuable
discussions during this research. This
research has been supported by the
DARPA grant HR00112290029 with the
program “AI‐assisted Climate Tipping‐
point Modeling” managed by Dr. Joshua
Elliott. Computing resources for
simulations shown in this paper were
carried out using the DOE Biological and
Environmental Research (BER) Earth
System Modeling program's Compy
computing cluster located at Pacific
Northwest National Laboratory (PNNL)
and using the resources of the National
Energy Research Scientific Computing
Center (NERSC), a U.S. Department of
Energy Office of Science User Facility
located at Lawrence Berkeley National
Laboratory, operated under Contract No.
DE‐AC02‐05CH11231. PNNL is operated
by Battelle Memorial Institute for the U.S.
Department of Energy under Contract DE‐
AC05‐76RL01830.

Journal of Advances in Modeling Earth Systems 10.1029/2023MS004138

ZHANG ET AL. 30 of 34

 19422466, 2024, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S004138 by C
ochrane G

reece, W
iley O

nline L
ibrary on [11/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/ClimateGlobalChange/tempestextremes
https://github.com/ClimateGlobalChange/tempestextremes
https://climate.ucdavis.edu/tempestextremes.php
https://climate.ucdavis.edu/tempestextremes.php
https://esgf-node.llnl.gov/projects/cmip6/
https://esgf-node.llnl.gov/projects/cmip6/
https://doi.org/10.24381/cds.bd0915c6
https://zenodo.org/doi/10.5281/zenodo.11053624
https://doi.org/10.1016/j.wace.2016.07.001
https://doi.org/10.1016/j.wace.2016.07.001
https://doi.org/10.1029/2019MS002024
https://doi.org/10.1029/2019MS002024
https://doi.org/10.1126/sciadv.adf0259


Barthel Sorensen, B., Charalampopoulos, A., Zhang, S., Harrop, B. E., Leung, L. R., & Sapsis, T. P. (2024). A non‐intrusive machine learning
framework for debiasing long‐time coarse resolution climate simulations and quantifying rare events statistics. Journal of Advances in
Modeling Earth Systems, 16(3), e2023MS004122. https://doi.org/10.1029/2023MS004122

Bruyère, C. L., Done, J. M., Holland, G. J., & Fredrick, S. (2014). Bias corrections of global models for regional climate simulations of high‐
impact weather. Climate Dynamics, 43(7–8), 1847–1856. https://doi.org/10.1007/s00382‐013‐2011‐6

Camargo, S. J., Emanuel, K. A., & Sobel, A. H. (2007). Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis.
Journal of Climate, 20(19), 4819–4834. https://doi.org/10.1175/JCLI4282.1

Charalampopoulos, A.‐T., Zhang, S., Harrop, B., Leung, L. Y. R., & Sapsis, T. (2023). Statistics of extreme events in coarse‐scale climate
simulations via machine learning correction operators trained on nudged datasets. https://doi.org/10.48550/arXiv.2304.02117

Chen, J., Arsenault, R., Brissette, F. P., & Zhang, S. (2021). Climate change impact studies: Should we bias correct climate model outputs or post‐
process impact model outputs? Water Resources Research, 57(5), e2020WR028638. https://doi.org/10.1029/2020WR028638

Chen, J., Brissette, F. P., & Caya, D. (2020). Remaining error sources in bias‐corrected climate model outputs. Climatic Change, 162(2), 563–582.
https://doi.org/10.1007/s10584‐020‐02744‐z

Christensen, J. H., Boberg, F., Christensen, O. B., & Lucas‐Picher, P. (2008). On the need for bias correction of regional climate change pro-
jections of temperature and precipitation. Geophysical Research Letters, 35(20), L20709. https://doi.org/10.1029/2008GL035694

Colle, B. A., Booth, J. F., & Chang, E. K. (2015). A review of historical and future changes of extratropical cyclones and associated impacts along
the US East Coast. Current Climate Change Reports, 1(3), 125–143. https://doi.org/10.1007/s40641‐015‐0013‐7

Collins, M., Knutti, R., Arblaster, J., Dufresne, J.‐L., Fichefet, T., Friedlingstein, P., et al. (2013). Long‐term climate change: Projections,
commitments and irreversibility. In T. Stocker et al. (Eds.), Climate change 2013 ‐ The physical science basis (pp. 1029–1136). Cambridge
University Press. https://doi.org/10.1017/CBO9781107415324.024

Dai, P., & Nie, J. (2022). Robust expansion of extreme midlatitude storms under global warming. Geophysical Research Letters, 49(10),
e2022GL099007. https://doi.org/10.1029/2022GL099007

Dennis, J. M., Edwards, J., Evans, K. J., Guba, O., Lauritzen, P. H., Mirin, A. A., et al. (2012). CAM‐SE: A scalable spectral element dynamical
core for the community atmosphere model. The International Journal of High Performance Computing Applications, 26(1), 74–89. https://doi.
org/10.1177/1094342011428142

Deque, M. (2007). Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: Model results and statistical
correction according to observed values. Global and Planetary Change, 57(1), 16–26. (Extreme Climatic Events). https://doi.org/10.1016/j.
gloplacha.2006.11.030

Dettinger, M. D., Ralph, F. M., & Lavers, D. A. (2015). Setting the stage for a global science of atmospheric rivers. Eos, Earth and Space Science
News, 96. https://doi.org/10.1029/2015EO038675

Dixon, K. W., Lanzante, J. R., Nath, M. J., Hayhoe, K., Stoner, A., Radhakrishnan, A., et al. (2016). Evaluating the stationarity assumption in
statistically downscaled climate projections: Is past performance an indicator of future results? Climatic. Change, 135(3–4), 395–408. https://
doi.org/10.1007/s10584‐016‐1598‐0

Done, J. M., Holland, G. J., Bruyère, C. L., Leung, L. R., & Suzuki‐Parker, A. (2015). Modeling high‐impact weather and climate: Lessons from a
tropical cyclone perspective. Climatic Change, 129(3–4), 381–395. https://doi.org/10.1007/s10584‐013‐0954‐6

E3SM Project, D. (2021). Energy exascale earth system model v2.0. [Computer Software]. https://doi.org/10.11578/E3SM/dc.20210927.1
Emanuel, K. A. (2000). A statistical analysis of tropical cyclone intensity.Monthly Weather Review, 128(4), 1139–1152. https://doi.org/10.1175/
1520‐0493(2000)128〈1139:ASAOTC〉2.0.CO;2

Emanuel, K. A. (2013). Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proceedings of the
National Academy of Sciences, 110(30), 12219–12224. https://doi.org/10.1073/pnas.1301293110

Emanuel, K. A., Ravela, S., Vivant, E., & Risi, C. (2006). A statistical deterministic approach to hurricane risk assessment. Bulletin of the
American Meteorological Society, 87(3), 299–314. https://doi.org/10.1175/BAMS‐87‐3‐299

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the coupled model inter-
comparison project phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958. https://doi.
org/10.5194/gmd‐9‐1937‐2016

Feng, L., Smith, S. J., Braun, C., Crippa, M., Gidden, M. J., Hoesly, R., et al. (2020). The generation of gridded emissions data for CMIP6.
Geoscientific Model Development, 13(2), 461–482. https://doi.org/10.5194/gmd‐13‐461‐2020

Fink, A. H., Brücher, T., Ermert, V., Krüger, A., & Pinto, J. G. (2009). The European storm Kyrill in January 2007: Synoptic evolution,
meteorological impacts and some considerations with respect to climate change. Natural Hazards and Earth System Sciences, 9(2), 405–423.
https://doi.org/10.5194/nhess‐9‐405‐2009

Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., et al. (2013). Evaluation of climate models. In T. F. Stocker et al.
(Eds.),Climate change 2013: The physical science basis. contribution of working group i to the fifth assessment report of the intergovernmental
panel on climate change (pp. 741–882). Cambridge University Press. https://doi.org/10.1017/CBO9781107415324.020

François, B., Vrac, M., Cannon, A. J., Robin, Y., & Allard, D. (2020). Multivariate bias corrections of climate simulations: Which benefits for
which losses? Earth System Dynamics, 11(2), 537–562. https://doi.org/10.5194/esd‐11‐537‐2020

Fu, C., Wang, S., Xiong, Z., Gutowski, W. J., Lee, D.‐K., McGregor, J. L., et al. (2005). Regional climate model intercomparison project for Asia.
Bulletin of the American Meteorological Society, 86(2), 257–266. https://doi.org/10.1175/BAMS‐86‐2‐257

Fulton, D. J., Clarke, B. J., & Hegerl, G. C. (2023). Bias correcting climate model simulations using unpaired image‐to‐image translation net-
works. Artificial Intelligence for the Earth Systems, 2(2), e220031. https://doi.org/10.1175/AIES‐D‐22‐0031.1

Gates, W. L., Boyle, J. S., Covey, C., Dease, C. G., Doutriaux, C. M., Drach, R. S., et al. (1999). An overview of the results of the Atmospheric
Model Intercomparison Project (AMIP I). Bulletin of the American Meteorological Society, 80(1), 29–56. https://doi.org/10.1175/1520‐0477
(1999)080〈0029:AOOTRO〉2.0.CO;2

Gettelman, A., & Morrison, H. (2015). Advanced two‐moment bulk microphysics for global models, Part I: Off‐line tests and comparison with
other schemes. Journal of Climate, 28(3), 1268–1287. https://doi.org/10.1175/JCLI‐D‐14‐00102.1

Giorgi, F., Brodeur, C. S., & Bates, G. T. (1994). Regional climate change scenarios over the United States produced with a nested regional
climate model. Journal of Climate, 7(3), 375–399. https://doi.org/10.1175/1520‐0442(1994)007〈0375:RCCSOT〉2.0.CO;2

Golaz, J.‐C., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q., Wolfe, J. D., et al. (2019). The DOE E3SM coupled model version 1:
Overview and evaluation at standard resolution. Journal of Advances in Modeling Earth Systems, 11(7), 2089–2129. https://doi.org/10.1029/
2018MS001603

Golaz, J.‐C., Larson, V., & Cotton, W. (2002). A pdf‐based model for boundary layer clouds. Part I: Method and model description. Journal of the
Atmospheric Sciences, 59(24), 3540–3551. https://doi.org/10.1175/1520‐0469(2002)059〈3540:APBMFB〉2.0.CO;2

Journal of Advances in Modeling Earth Systems 10.1029/2023MS004138

ZHANG ET AL. 31 of 34

 19422466, 2024, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S004138 by C
ochrane G

reece, W
iley O

nline L
ibrary on [11/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1029/2023MS004122
https://doi.org/10.1007/s00382-013-2011-6
https://doi.org/10.1175/JCLI4282.1
https://doi.org/10.48550/arXiv.2304.02117
https://doi.org/10.1029/2020WR028638
https://doi.org/10.1007/s10584-020-02744-z
https://doi.org/10.1029/2008GL035694
https://doi.org/10.1007/s40641-015-0013-7
https://doi.org/10.1017/CBO9781107415324.024
https://doi.org/10.1029/2022GL099007
https://doi.org/10.1177/1094342011428142
https://doi.org/10.1177/1094342011428142
https://doi.org/10.1016/j.gloplacha.2006.11.030
https://doi.org/10.1016/j.gloplacha.2006.11.030
https://doi.org/10.1029/2015EO038675
https://doi.org/10.1007/s10584-016-1598-0
https://doi.org/10.1007/s10584-016-1598-0
https://doi.org/10.1007/s10584-013-0954-6
https://doi.org/10.11578/E3SM/dc.20210927.1
https://doi.org/10.1175/1520-0493(2000)128%E2%8C%A91139:ASAOTC%E2%8C%AA2.0.CO;2
https://doi.org/10.1175/1520-0493(2000)128%E2%8C%A91139:ASAOTC%E2%8C%AA2.0.CO;2
https://doi.org/10.1073/pnas.1301293110
https://doi.org/10.1175/BAMS-87-3-299
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/gmd-13-461-2020
https://doi.org/10.5194/nhess-9-405-2009
https://doi.org/10.1017/CBO9781107415324.020
https://doi.org/10.5194/esd-11-537-2020
https://doi.org/10.1175/BAMS-86-2-257
https://doi.org/10.1175/AIES-D-22-0031.1
https://doi.org/10.1175/1520-0477(1999)080%E2%8C%A90029:AOOTRO%E2%8C%AA2.0.CO;2
https://doi.org/10.1175/1520-0477(1999)080%E2%8C%A90029:AOOTRO%E2%8C%AA2.0.CO;2
https://doi.org/10.1175/JCLI-D-14-00102.1
https://doi.org/10.1175/1520-0442(1994)007%E2%8C%A90375:RCCSOT%E2%8C%AA2.0.CO;2
https://doi.org/10.1029/2018MS001603
https://doi.org/10.1029/2018MS001603
https://doi.org/10.1175/1520-0469(2002)059%E2%8C%A93540:APBMFB%E2%8C%AA2.0.CO;2


Golaz, J.‐C., Van Roekel, L. P., Zheng, X., Roberts, A. F., Wolfe, J. D., Lin, W., et al. (2022). The DOE E3SM model version 2: Overview of the
physical model and initial model evaluation. Journal of Advances in Modeling Earth Systems, 14(12), e2022MS003156. https://doi.org/10.
1029/2022MS003156

Guan, B., & Waliser, D. E. (2017). Atmospheric rivers in 20 year weather and climate simulations: A multimodel, global evaluation. Journal of
Geophysical Research: Atmospheres, 122(11), 5556–5581. https://doi.org/10.1002/2016JD026174

Gudmundsson, L., Bremnes, J. B., Haugen, J. E., & Engen‐Skaugen, T. (2012). Technical note: Downscaling RCM precipitation to the station
scale using statistical transformations – A comparison of methods.Hydrology and Earth System Sciences, 16(9), 3383–3390. https://doi.org/10.
5194/hess‐16‐3383‐2012

Gutiérrez, J. M., Maraun, D., Widmann, M., Huth, R., Hertig, E., Benestad, R., et al. (2019). An intercomparison of a large ensemble of statistical
downscaling methods over Europe: Results from the value perfect predictor cross‐validation experiment. International Journal of Climatology,
39(9), 3750–3785. https://doi.org/10.1002/joc.5462

Gutowski, W. J., Ullrich, P. A., Hall, A., Leung, L. R., O’Brien, T. A., Patricola, C.M., et al. (2020). The ongoing need for high‐resolution regional
climate models: Process understanding and stakeholder information. Bulletin of the American Meteorological Society, 101(5), E664–E683.
https://doi.org/10.1175/BAMS‐D‐19‐0113.1

Han, L., Chen, M., Chen, K., Chen, H., Zhang, Y., Lu, B., et al. (2021). A deep learning method for bias correction of ECMWF 24–240 h forecasts.
Advances in Atmospheric Sciences, 38(9), 1444–1459. https://doi.org/10.1007/s00376‐021‐0215‐y

Hawcroft, M. K., Shaffrey, L. C., Hodges, K. I., & Dacre, H. F. (2012). How much northern hemisphere precipitation is associated with
extratropical cyclones? Geophysical Research Letters, 39(24). https://doi.org/10.1029/2012GL053866

Herrington, A. R., Lauritzen, P. H., Reed, K. A., Goldhaber, S., & Eaton, B. E. (2019). Exploring a lower‐resolution physics grid in CAM‐SE‐
CSLAM. Journal of Advances in Modeling Earth Systems, 11(7), 1894–1916. https://doi.org/10.1029/2019MS001684

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñz Sabater, J., et al. (2020). The ERA5 global reanalysis.Quarterly Journal of
the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803

Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens‐Maenhout, G., Pitkanen, T., et al. (2018). Historical (1750–2014) anthropogenic
emissions of reactive gases and aerosols from the community emissions data system (CEDS). Geoscientific Model Development, 11(1), 369–
408. https://doi.org/10.5194/gmd‐11‐369‐2018

Hoskins, B. J., & Hodges, K. I. (2002). New perspectives on the northern hemisphere winter storm tracks. Journal of the Atmospheric Sciences,
59(6), 1041–1061. https://doi.org/10.1175/1520‐0469(2002)059〈1041:NPOTNH〉2.0.CO;2

Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., & Collins, W. D. (2008). Radiative forcing by long–lived
greenhouse gases: Calculations with the AER radiative transfer models. Journal of Geophysical Research, 113(D13), D13103. https://doi.
org/10.1029/2008JD009944

Kanada, S., Takemi, T., Kato, M., Yamasaki, S., Fudeyasu, H., Tsuboki, K., et al. (2017). A multimodel intercomparison of an intense typhoon in
future, warmer climates by four 5‐km‐mesh models. Journal of Climate, 30(15), 6017–6036. https://doi.org/10.1175/JCLI‐D‐16‐0715.1

Kanada, S., & Wada, A. (2016). Sensitivity to horizontal resolution of the simulated intensifying rate and inner‐core structure of typhoon Ida, an
extremely intense typhoon. Journal of the Meteorological Society of Japan, 94(0), 181–190. https://doi.org/10.2151/jmsj.2015‐037

Kendon, E. J., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C., & Senior, C. A. (2014). Heavier summer downpours with climate change
revealed by weather forecast resolution model. Nature Climate Change, 4(7), 570–576. https://doi.org/10.1038/nclimate2258

Kim, S., Leung, L. R., Guan, B., & Chiang, J. C. H. (2022). Atmospheric river representation in the energy exascale earth system model (E3SM)
version 1.0. Geoscientific Model Development, 15(14), 5461–5480. https://doi.org/10.5194/gmd‐15‐5461‐2022

Kitoh, A., & Endo, H. (2016). Changes in precipitation extremes projected by a 20‐km mesh global atmospheric model. Weather and Climate
Extremes, 11, 41–52. https://doi.org/10.1016/j.wace.2015.09.001

Knutson, T. R., Camargo, S. J., Chan, J. C. L., Emanuel, K. A., Ho, C.‐H., Kossin, J., et al. (2019). Tropical cyclones and climate change
assessment: Part I: Detection and attribution. Bulletin of the American Meteorological Society, 100(10), 1987–2007. https://doi.org/10.1175/
BAMS‐D‐18‐0189.1

Knutson, T. R., Camargo, S. J., Chan, J. C. L., Emanuel, K. A., Ho, C.‐H., Kossin, J., et al. (2020). Tropical cyclones and climate change
assessment: Part II: Projected response to anthropogenic warming. Bulletin of the American Meteorological Society, 101(3), E303–E322.
https://doi.org/10.1175/BAMS‐D‐18‐0194.1

Knutson, T. R., Sirutis, J. J., Vecchi, G. A., Garner, S., Zhao, M., Kim, H.‐S., et al. (2013). Dynamical downscaling projections of twenty‐first‐
century Atlantic hurricane activity: CMIP3 and CMIP5 model‐based scenarios. Journal of Climate, 26(17), 6591–6617. https://doi.org/10.
1175/JCLI‐D‐12‐00539.1

Landsea, C. W., & Franklin, J. L. (2013). Atlantic hurricane database uncertainty and presentation of a new database format. Monthly Weather
Review, 141(10), 3576–3592. https://doi.org/10.1175/MWR‐D‐12‐00254.1

Larson, V. E., Golaz, J.‐C., & Cotton, W. R. (2002). A pdf‐based model for boundary layer clouds. Part I: Method and model description. Journal
of the Atmospheric Sciences, 59(24), 3519–3539. https://doi.org/10.1175/1520‐0469(2002)059〈3519:SSAMVI〉2.0.CO;2

Lauritzen, P. H., Nair, R. D., Herrington, A. R., Callaghan, P., Goldhaber, S., Dennis, J. M., et al. (2018). NCAR release of CAM‐SE in CESM2.0:
A reformulation of the spectral element dynamical core in dry‐mass vertical coordinates with comprehensive treatment of condensates and
energy. Journal of Advances in Modeling Earth Systems, 10(7), 1537–1570. https://doi.org/10.1029/2017MS001257

Lee, C.‐Y., Camargo, S. J., Sobel, A. H., & Tippett, M. K. (2020). Statistical–dynamical downscaling projections of tropical cyclone activity in a
warming climate: Two diverging genesis scenarios. Journal of Climate, 33(11), 4815–4834. https://doi.org/10.1175/JCLI‐D‐19‐0452.1

Leung, L. R., Bader, D. C., Taylor, M. A., & McCoy, R. B. (2020). An introduction to the E3SM special collection: Goals, science drivers,
development, and analysis. Journal of Advances in Modeling Earth Systems, 12(11), e2019MS001821. https://doi.org/10.1029/2019ms001821

Liu, X., Ma, P.‐L., Wang, H., Tilmes, S., Singh, B., Easter, R. C., et al. (2016). Description and evaluation of a new four–mode version of the
modal aerosol module (MAM4) within version 5.3 of the Community Atmosphere Model. Geoscientific Model Development, 9(2), 505–522.
https://doi.org/10.5194/gmd‐9‐505‐2016

Lucas‐Picher, P., Arg ueso, D., Brisson, E., Tramblay, Y., Berg, P., Lemonsu, A., et al. (2021). Convection‐permitting modeling with regional
climate models: Latest developments and next steps. WIREs Climate Change, 12(6), e731. https://doi.org/10.1002/wcc.731

McClenny, E. E., Ullrich, P. A., & Grotjahn, R. (2020). Sensitivity of atmospheric river vapor transport and precipitation to uniform sea surface
temperature increases. Journal of Geophysical Research: Atmospheres, 125(21), e2020JD033421. https://doi.org/10.1029/2020JD033421

Merz, B., Kuhlicke, C., Kunz, M., Pittore, M., Babeyko, A., Bresch, D. N., et al. (2020). Impact forecasting to support emergency management of
natural hazards. Reviews of Geophysics, 58(4), e2020RG000704. https://doi.org/10.1029/2020RG000704

Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a
validated correlated‐k model for the longwave. Journal of Geophysical Research, 102(D14), 16663–16682. https://doi.org/10.1029/97JD00237

Journal of Advances in Modeling Earth Systems 10.1029/2023MS004138

ZHANG ET AL. 32 of 34

 19422466, 2024, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S004138 by C
ochrane G

reece, W
iley O

nline L
ibrary on [11/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1029/2022MS003156
https://doi.org/10.1029/2022MS003156
https://doi.org/10.1002/2016JD026174
https://doi.org/10.5194/hess-16-3383-2012
https://doi.org/10.5194/hess-16-3383-2012
https://doi.org/10.1002/joc.5462
https://doi.org/10.1175/BAMS-D-19-0113.1
https://doi.org/10.1007/s00376-021-0215-y
https://doi.org/10.1029/2012GL053866
https://doi.org/10.1029/2019MS001684
https://doi.org/10.1002/qj.3803
https://doi.org/10.5194/gmd-11-369-2018
https://doi.org/10.1175/1520-0469(2002)059%E2%8C%A91041:NPOTNH%E2%8C%AA2.0.CO;2
https://doi.org/10.1029/2008JD009944
https://doi.org/10.1029/2008JD009944
https://doi.org/10.1175/JCLI-D-16-0715.1
https://doi.org/10.2151/jmsj.2015-037
https://doi.org/10.1038/nclimate2258
https://doi.org/10.5194/gmd-15-5461-2022
https://doi.org/10.1016/j.wace.2015.09.001
https://doi.org/10.1175/BAMS-D-18-0189.1
https://doi.org/10.1175/BAMS-D-18-0189.1
https://doi.org/10.1175/BAMS-D-18-0194.1
https://doi.org/10.1175/JCLI-D-12-00539.1
https://doi.org/10.1175/JCLI-D-12-00539.1
https://doi.org/10.1175/MWR-D-12-00254.1
https://doi.org/10.1175/1520-0469(2002)059%E2%8C%A93519:SSAMVI%E2%8C%AA2.0.CO;2
https://doi.org/10.1029/2017MS001257
https://doi.org/10.1175/JCLI-D-19-0452.1
https://doi.org/10.1029/2019ms001821
https://doi.org/10.5194/gmd-9-505-2016
https://doi.org/10.1002/wcc.731
https://doi.org/10.1029/2020JD033421
https://doi.org/10.1029/2020RG000704
https://doi.org/10.1029/97JD00237


Mo, R., So, R., Brugman, M. M., Mooney, C., Liu, A. Q., Jakob, M., et al. (2021). Column relative humidity and primary condensation rate as two
useful supplements to atmospheric river analysis. Water Resources Research, 57(11), e2021WR029678. https://doi.org/10.1029/
2021WR029678

Moghim, S., & Bras, R. L. (2017). Bias correction of climate modeled temperature and precipitation using artificial neural networks. Journal of
Hydrometeorology, 18(7), 1867–1884. https://doi.org/10.1175/jhm‐d‐16‐0247.1

Moon, H., Gudmundsson, L., & Seneviratne, S. I. (2018). Drought persistence errors in global climate models. Journal of Geophysical Research:
Atmospheres, 123(7), 3483–3496. https://doi.org/10.1002/2017JD027577

Mori, N., Shimura, T., Yoshida, K., Mizuta, R., Okada, Y., Fujita, M., et al. (2019). Future changes in extreme storm surges based on mega‐
ensemble projection using 60‐km resolution atmospheric global circulation model. Coastal Engineering Journal, 61(3), 295–307. https://
doi.org/10.1080/21664250.2019.1586290

Morrison, H., & Gettelman, A. (2008). A new two‐moment bulk stratiform cloud microphysics scheme in the community atmosphere model,
version 3 (CAM3). Part I: Description and numerical tests. Journal of Climate, 21(15), 3642–3659. https://doi.org/10.1175/2008JCLI2105.1

Mueller, B., & Seneviratne, S. I. (2014). Systematic land climate and evapotranspiration biases in CMIP5 simulations. Geophysical Research
Letters, 41(1), 128–134. https://doi.org/10.1002/2013GL058055

Nie, J., Sobel, A. H., Shaevitz, D. A., &Wang, S. (2018). Dynamic amplification of extreme precipitation sensitivity. Proceedings of the National
Academy of Sciences, 115(38), 9467–9472. https://doi.org/10.1073/pnas.1800357115

Oleson, K. W., Lawrence, M., Bonan, B., Drewniak, B. A., Huang, M., Koven, D., et al. (2013). Technical description of version 4.5 of the
community land model (CLM). NCAR Technical Note NCAR/TN‐503+STR, No. 420pp.) NCAR, USA. https://doi.org/10.5065/D6RR1W7M

O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., et al. (2016). The scenario model intercomparison project
(scenariomip) for CMIP6. Geoscientific Model Development, 9(9), 3461–3482. https://doi.org/10.5194/gmd‐9‐3461‐2016

Payne, A. E., Demory, M.‐E., Leung, L. R., Ramos, A. M., Shields, C. A., Rutz, J. J., et al. (2020). Responses and impacts of atmospheric rivers to
climate change. Nature Reviews Earth & Environment, 1(3), 143–157. https://doi.org/10.1038/s43017‐020‐0030‐5

Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., & Wang, W. (2002). An improved in situ and satellite SST analysis for climate.
Journal of Climate, 15(13), 1609–1625. https://doi.org/10.1175/1520‐0442(2002)015〈1609:AIISAS〉2.0.CO;2

Schär, C., Frei, C., Lüthi, D., & Davies, H. C. (1996). Surrogate climate‐change scenarios for regional climate models. Geophysical Research
Letters, 23(6), 669–672. https://doi.org/10.1029/96GL00265

Seneviratne, S., Nicholls, N., Easterling, D., Goodess, C., Kanae, S., Kossin, J., et al. (2012). Changes in climate extremes and their impacts on the
natural physical environment. In C. B. Field, V. Barros, T. F. Stocker, & Q. Dahe (Eds.),Managing the risks of extreme events and disasters to
advance climate change adaptation: Special report of the intergovernmental panel on climate change (pp. 109–230). Cambridge University
Press. https://doi.org/10.1017/CBO9781139177245.006

Seneviratne, S., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di Luca, A., et al. (2023). Weather and climate extreme events in a changing
climate. In V. Masson‐Delmotte et al. (Eds.), Climate change 2021 – The physical science basis: Working group I contribution to the sixth
assessment report of the intergovernmental panel on climate change (pp. 1513–1766). Cambridge University Press. https://doi.org/10.1017/
9781009157896.013

Shields, C. A., Rutz, J. J., Leung, L.‐Y., Ralph, F. M., Wehner, M., Kawzenuk, B., et al. (2018). Atmospheric river tracking method inter-
comparison project (ARTMIP): Project goals and experimental design. Geoscientific Model Development, 11(6), 2455–2474. https://doi.org/
10.5194/gmd‐11‐2455‐2018

Sinclair, V. A., Rantanen, M., Haapanala, P., Räisänen, J., & Järvinen, H. (2020). The characteristics and structure of extra‐tropical cyclones in a
warmer climate. Weather and Climate Dynamics, 1(1), 1–25. https://doi.org/10.5194/wcd‐1‐1‐2020

Steininger, M., Abel, D., Ziegler, K., Krause, A., Paeth, H., & Hotho, A. (2020). Deep learning for climate model output statistics. https://doi.org/
10.48550/arXiv.2012.10394

Sun, J., Zhang, K., Wan, H., Ma, P.‐L., Tang, Q., & Zhang, S. (2019). Impact of nudging strategy on the climate representativeness and hindcast
skill of constrained EAMv1 simulations. Journal of Advances in Modeling Earth Systems, 11(12), 3911–3933. https://doi.org/10.1029/
2019MS001831

Taylor, M. A., & Fournier, A. (2010). A compatible and conservative spectral element method on unstructured grids. Journal of Computational
Physics, 229(17), 5879–5895. https://doi.org/10.1016/j.jcp.2010.04.008

Teutschbein, C., & Seibert, J. (2012). Bias correction of regional climate model simulations for hydrological climate‐change impact studies:
Review and evaluation of different methods. Journal of Hydrology, 456–457, 12–29. https://doi.org/10.1016/j.jhydrol.2012.05.052

Trenberth, E., Berry, C. W., & Buja, E. (1993). Vertical interpolation and truncation of model‐coordinate data (NCAR Technical Report NCAR/
TN‐396+STR). https://doi.org/10.5065/D6HX19NH

Ullrich, P. (2022). Tempestextremes v2.2.1 [Computer Software]. https://github.com/ClimateGlobalChange/tempestextremes/releases/tag/v2.
2.1

Ullrich, P. A., Zarzycki, C. M., McClenny, E. E., Pinheiro, M. C., Stansfield, A. M., & Reed, K. A. (2021). Tempestextremes v2.1: A community
framework for feature detection, tracking, and analysis in large datasets. Geoscientific Model Development, 14(8), 5023–5048. https://doi.org/
10.5194/gmd‐14‐5023‐2021

Vaittinada Ayar, P., Vrac, M., & Mailhot, A. (2021). Ensemble bias correction of climate simulations: Preserving internal variability. Scientific
Reports, 11(1), 3098. https://doi.org/10.1038/s41598‐021‐82715‐1

Volosciuk, C., Maraun, D., Semenov, V. A., & Park, W. (2015). Extreme precipitation in an atmosphere general circulation model: Impact of
horizontal and vertical model resolutions. Journal of Climate, 28(3), 1184–1205. https://doi.org/10.1175/JCLI‐D‐14‐00337.1

Vrac, M., Drobinski, P., Merlo, A., Herrmann, M., Lavaysse, C., Li, L., & Somot, S. (2012). Dynamical and statistical downscaling of the French
mediterranean climate: Uncertainty assessment.Natural Hazards and Earth System Sciences, 12(9), 2769–2784. https://doi.org/10.5194/nhess‐
12‐2769‐2012

Wang, F., & Tian, D. (2022). On deep learning‐based bias correction and downscaling of multiple climate models simulations. Climate Dynamics,
59(11–12), 3451–3468. https://doi.org/10.1007/s00382‐022‐06277‐2

Wang, H., Easter, R. C., Zhang, R., Ma, P.‐L., Singh, B., Zhang, K., et al. (2020). Aerosols in the E3SM version 1: New developments and their
impacts on radiative forcing. Journal of Advances in Modeling Earth Systems, 12(1), e2019MS001851. https://doi.org/10.1029/
2019MS001851

Wang, Y., Liu, X., Hoose, C., & Wang, B. (2014). Different contact angle distributions for heterogeneous ice nucleation in the community at-
mospheric model version 5. Atmospheric Chemistry and Physics, 14(19), 10411–10430. https://doi.org/10.5194/acp‐14‐10411‐2014

Wehrli, K., Guillod, B. P., Hauser, M., Leclair, M., & Seneviratne, S. I. (2018). Assessing the dynamic versus thermodynamic origin of climate
model biases. Geophysical Research Letters, 45(16), 8471–8479. https://doi.org/10.1029/2018GL079220

Journal of Advances in Modeling Earth Systems 10.1029/2023MS004138

ZHANG ET AL. 33 of 34

 19422466, 2024, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S004138 by C
ochrane G

reece, W
iley O

nline L
ibrary on [11/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1029/2021WR029678
https://doi.org/10.1029/2021WR029678
https://doi.org/10.1175/jhm-d-16-0247.1
https://doi.org/10.1002/2017JD027577
https://doi.org/10.1080/21664250.2019.1586290
https://doi.org/10.1080/21664250.2019.1586290
https://doi.org/10.1175/2008JCLI2105.1
https://doi.org/10.1002/2013GL058055
https://doi.org/10.1073/pnas.1800357115
https://doi.org/10.5065/D6RR1W7M
https://doi.org/10.5194/gmd-9-3461-2016
https://doi.org/10.1038/s43017-020-0030-5
https://doi.org/10.1175/1520-0442(2002)015%E2%8C%A91609:AIISAS%E2%8C%AA2.0.CO;2
https://doi.org/10.1029/96GL00265
https://doi.org/10.1017/CBO9781139177245.006
https://doi.org/10.1017/9781009157896.013
https://doi.org/10.1017/9781009157896.013
https://doi.org/10.5194/gmd-11-2455-2018
https://doi.org/10.5194/gmd-11-2455-2018
https://doi.org/10.5194/wcd-1-1-2020
https://doi.org/10.48550/arXiv.2012.10394
https://doi.org/10.48550/arXiv.2012.10394
https://doi.org/10.1029/2019MS001831
https://doi.org/10.1029/2019MS001831
https://doi.org/10.1016/j.jcp.2010.04.008
https://doi.org/10.1016/j.jhydrol.2012.05.052
https://doi.org/10.5065/D6HX19NH
https://github.com/ClimateGlobalChange/tempestextremes/releases/tag/v2.2.1
https://github.com/ClimateGlobalChange/tempestextremes/releases/tag/v2.2.1
https://doi.org/10.5194/gmd-14-5023-2021
https://doi.org/10.5194/gmd-14-5023-2021
https://doi.org/10.1038/s41598-021-82715-1
https://doi.org/10.1175/JCLI-D-14-00337.1
https://doi.org/10.5194/nhess-12-2769-2012
https://doi.org/10.5194/nhess-12-2769-2012
https://doi.org/10.1007/s00382-022-06277-2
https://doi.org/10.1029/2019MS001851
https://doi.org/10.1029/2019MS001851
https://doi.org/10.5194/acp-14-10411-2014
https://doi.org/10.1029/2018GL079220


Wilks, D. S. (2016). “The stippling shows statistically significant grid points”: How research results are routinely overstated and overinterpreted,
and what to do about it. Bulletin of the American Meteorological Society, 97(12), 2263–2273. https://doi.org/10.1175/BAMS‐D‐15‐00267.1

Willison, J., Robinson, W. A., & Lackmann, G. M. (2013). The importance of resolving mesoscale latent heating in the North Atlantic storm track.
Journal of the Atmospheric Sciences, 70(7), 2234–2250. https://doi.org/10.1175/JAS‐D‐12‐0226.1

Xu, W., Balaguru, K., August, A., Lalo, N., Hodas, N., DeMaria, M., & Judi, D. (2021). Deep learning experiments for tropical cyclone intensity
forecasts. Weather and Forecasting, 36(4), 1453–1470. https://doi.org/10.1175/WAF‐D‐20‐0104.1

Xu, Z., Han, Y., Tam, C.‐Y., Yang, Z.‐L., & Fu, C. (2021). Bias‐corrected CMIP6 global dataset for dynamical downscaling of the historical and
future climate (1979–2100). Scientific Data, 8(1), 293. https://doi.org/10.1038/s41597‐021‐01079‐3

Xu, Z., & Yang, Z.‐L. (2012). An improved dynamical downscaling method with GCM bias corrections and its validation with 30 years of climate
simulations. Journal of Climate, 25(18), 6271–6286. https://doi.org/10.1175/JCLI‐D‐12‐00005.1

Xue, Z., Ullrich, P., & Leung, L.‐Y. R. (2023). Sensitivity of the pseudo‐global warming method under flood conditions: A case study from the
northeastern US. Hydrology and Earth System Sciences, 27(9), 1909–1927. https://doi.org/10.5194/hess‐27‐1909‐2023

Zappa, G., Shaffrey, L. C., Hodges, K. I., Sansom, P. G., & Stephenson, D. B. (2013). A multimodel assessment of future projections of North
Atlantic and European extratropical cyclones in the CMIP5 climate models. Journal of Climate, 26(16), 5846–5862. https://doi.org/10.1175/
JCLI‐D‐12‐00573.1

Zarzycki, C. M., & Ullrich, P. A. (2017). Assessing sensitivities in algorithmic detection of tropical cyclones in climate data. Geophysical
Research Letters, 44(2), 1141–1149. https://doi.org/10.1002/2016GL071606

Zhang, G. J., &McFarlane, N. A. (1995). Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian climate
centre general circulation model. Atmosphere‐Ocean, 33(3), 407–446. https://doi.org/10.1080/07055900.1995.9649539

Zhang, S., & Charalampopoulos, A.‐T. (2024). Analysis scripts and figure dataset for Zhang et al. (2024) [Dataset]. Zenodo. https://doi.org/10.
5281/zenodo.11053624

Zhang, S., Zhang, K., Wan, H., & Sun, J. (2022). Further improvement and evaluation of nudging in the E3SM atmosphere model version 1
(EAMv1): Simulations of the mean climate, weather events, and anthropogenic aerosol effects. Geoscientific Model Development, 15(17),
6787–6816. https://doi.org/10.5194/gmd‐15‐6787‐2022

Journal of Advances in Modeling Earth Systems 10.1029/2023MS004138

ZHANG ET AL. 34 of 34

 19422466, 2024, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S004138 by C
ochrane G

reece, W
iley O

nline L
ibrary on [11/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1175/BAMS-D-15-00267.1
https://doi.org/10.1175/JAS-D-12-0226.1
https://doi.org/10.1175/WAF-D-20-0104.1
https://doi.org/10.1038/s41597-021-01079-3
https://doi.org/10.1175/JCLI-D-12-00005.1
https://doi.org/10.5194/hess-27-1909-2023
https://doi.org/10.1175/JCLI-D-12-00573.1
https://doi.org/10.1175/JCLI-D-12-00573.1
https://doi.org/10.1002/2016GL071606
https://doi.org/10.1080/07055900.1995.9649539
https://doi.org/10.5281/zenodo.11053624
https://doi.org/10.5281/zenodo.11053624
https://doi.org/10.5194/gmd-15-6787-2022

	description
	A Machine Learning Bias Correction on Large‐Scale Environment of High‐Impact Weather Systems in E3SM Atmosphere Model
	1. Introduction
	2. Methodology
	2.1. A Brief Overview of E3SM Atmosphere Model (EAM)
	2.2. Model Simulation
	2.3. Machine Learning Bias Correction
	2.4. Analysis Strategy

	3. Validation of Machine Learning (ML) Bias Correction
	3.1. Bias Correction on Historical Simulation
	3.2. Impact of Bias Correction on Mean Climate Change Signals

	4. Impact of Bias Correction on Statistics of Extreme Weather Events
	4.1. Atmospheric Rivers (ARs)
	4.2. Extratropical Cyclones (ETCs)
	4.3. Tropical Cyclones (TCs)

	5. Conclusions
	Additional Tables and Figures for Section 2.2
	Machine Learning Framework
	Data Availability Statement



