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Dynamic stall is an abrupt flow separation phenomenon that occurs on airfoils rapidly

changing their posture. Because it accompanies a rapid drop of lift, there have been attempts to

prevent the dynamic stall by using techniques such as impulsive jets, plasma actuators, and

morphing wings. To maximize their efficacy, this research aims for a real-time forecast of the

lift coefficient of a NACA0012 airfoil pitching and plunging randomly under dynamic stall

conditions at 𝑅𝑒 ∼ 105 by using surface pressure sensors. A large eddy simulation is used to

simulate the flow around a randomly maneuvering airfoil, and it is demonstrated that a fully

connected neural network fed with discrete wavelet-transformed pressure signals is enough to

predict the lift coefficient of the near future. Certain sensor locations are found to be more

informative than others in such randomly fluctuating flow, unlike in quasi-periodic situations.

A fast optimal sensor placement strategy is also proposed. It reveals that two pressure sensors

near the leading edge, one on each side of the airfoil, can provide sufficient information for

forecasting the lift of a randomly maneuvering airfoil.

I. Introduction
Dynamic stall is a common phenomenon in engineering applications, including helicopters [1, 2], wind turbines

[3, 4], and micro aerial vehicles [5, 6]. It’s a stall happening on airfoils rapidly changing its posture, characterized by

delayed flow separation and overshoot and subsequent plummet of lift coefficient. Because an abrupt decrease in lift is

undesirable in most applications, there have been continuous attempts to postpone or prevent dynamic stalls. Techniques

used include impulsive jets [7], plasma actuators [4], and morphing wings [6]. In this research, we seek to predict

dynamic stalls before they happen to maximize the efficacy of the various dynamic stall suppression schemes.

Due to its rich dynamics, there has been extensive research on the physics of the dynamic stall phenomenon from

both experimental [8, 9] and numerical perspectives [10–12]. To name a few that are closely related to our research,

Martinat et al. [13] have shown by simulations that the flow around a pitching airfoil at 𝑅𝑒 ∼ 105 − 106 is practically

two-dimensional during the upward pitching while the flow is strongly three-dimensional during the downward pitching.

Sheng et al. [14] have proposed a non-dimensional reduced pitch rate concept that delimits the quasi-steady and dynamic
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stall. Gupta and Ansell [15, 16] have experimentally demonstrated that the dynamic stall is inherently a multiscale

phenomenon. They have pointed out the Kelvin-Helmholtz instability to be the driving mechanism of the dynamic stall

onset. Mayer et al. [17] and Raus et al. [18] have found that low-frequency components of the airfoil surface pressure

and noise are amplified during the dynamic stall, from experiments conducted inside aeroacoustic wind tunnels.

Meanwhile, there also have been efforts to forecast system responses under dynamic stall and unsteady flow events

in general. Dawson et al. [19] have used dynamic mode decomposition (DMD) to identify a piecewise-linear system

equation that can be used to predict lift and drag response to the pitching motion of an airfoil in a slow stream of air.

For the same purpose, Hemati et al. [20] have developed a quasi-linear parameter-varying model. Troshin and Seifert

[21] have tried to predict the evolution of the proper orthogonal decomposition modes of the flow field around an

airfoil maneuvering in a water tank, by using the airfoil posture information, forces on the airfoil, and time-delay neural

network. Shi et al. [22] have applied DMD with time-delay embedding to relate the current pressure on a periodically

pitching airfoil surface to the surface pressure of the near future. Siddiqui et al. [23] and Damiola et al. [24] have

developed nonlinear state-space models that take the angle of attack as input and the lift as output. Rudy and Sapsis

[25] have applied a long short-term memory neural network to predict intermittent but quasi-periodic fluctuations on

stationary airfoils using surface pressure signals. Under the same configuration, Barthel and Sapsis [26] have found that

even a very simple fully connected neural network can map amplitudes of characteristic frequency components to the

drag coefficient of the near future.

The present study aims for real-time forecasting of lift coefficients by utilizing pressure probes placed on the

randomly maneuvering airfoil surface. The random maneuver imposes additional complexity compared with previous

work that has focused on quasi-periodic conditions [26]. Section II describes the computational fluid dynamics (CFD)

method used to simulate the flow around the maneuvering airfoil. The lift coefficient forecasting algorithm and its

results are presented in Sec. III. A fast optimal sensor placement strategy based on the covariance coefficient is proposed

and is compared to the result of the 𝑅2-based greedy sequential sensor selection. The present work is wrapped up with

concluding remarks in Sec. V.

II. Numerical simulation
An open-source CFD software OpenFOAM® v2306 is used to simulate the flow around a maneuvering NACA0012

airfoil. We employ a large eddy simulation (LES) turbulence model to capture the three-dimensional flow’s temporal

dynamics within a reasonable computational cost. The computational domain is depicted in Fig. 1 (a). The domain

height is 8𝑐 and the length is 12𝑐, where 𝑐 is the chord length. A freestream boundary condition is imposed on the

inlet, outlet, and top and bottom faces to minimize the domain size’s effect on the flow around the airfoil. The domain

width in the spanwise direction is 0.2𝑐 which is deemed enough to reproduce the real flow [27]. Periodic boundary

condition is imposed on the front and back of the domain. A C-type overset mesh surrounds the airfoil so that the
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Fig. 1 (a) Computational domain of the LES simulation and (b) the locations of the pressure sensors.

maneuvering motion of the airfoil can be introduced. A compressible flow solver overRhoDyMPimpleFOAM solves the

governing mass, momentum, and energy equations while ideal air is assumed. The subgrid-scale turbulence is modeled

by a wall adapting local eddy viscosity (WALE) method [28], and the LES filter width is determined by a cube-root

volume method. The eddy viscosity near the airfoil surface is calculated based on Spalding’s near-wall velocity profile.

Thirty pressure probes are uniformly placed along the airfoil mid-span profile to collect static pressure data from the

simulation with 20 kHz frequency. The locations and numbering of the sensors are depicted in Fig. 1 (b). All of the

simulations were done on MIT Supercloud TX-E1 [29] operated by the Lincoln Laboratory Supercomputing Center.

The numerical scheme is validated by comparison with the experimental measurement of a periodically pitching

NACA0012 airfoil’s lift coefficient done by Lee and Gerontakos [8] at 𝑅𝑒 ∼ 1.35 · 105. Although we are interested in

a randomly maneuvering airfoil, the periodically pitching airfoil suffices for validation of the numerical simulation

because essential flow features of dynamic stall are also present in it. The lift coefficient results from the experiment and

numerical simulation are depicted in Fig. 2 to the changing angle of attack. The chord length 𝑐 = 0.15 m, the freestream

velocity 𝑈∞ = 14.0 m/s, and the angle of attack 𝛼 = 𝛼0 + 𝛼1sin(𝜔𝑡) = 10◦ + 15◦sin(18.7𝑡). The center of rotation is

located at 𝑐/4 from the leading edge. The simulation is conducted on three domains with different mesh sizes for a mesh

dependence study. The specifications, namely the number of cells, the size of the cells right on the airfoil surface, and

the required computational time are listed in Table 1. The Courant number is set to 0.3. The simulations are run for six

pitching cycles (∼ 2 s) and the time-synchronous averages are shown in the figure. The simulations took about 20 hours

on mesh A, 60 hours on mesh B, and 100 hours on mesh C. Because the dynamic stall is a multiscale phenomenon as

shown by Gupta and Ansell [16] driven by the small vortices inside shear layer, a more refined mesh and elaborate

subgrid eddy viscosity model are desired for better accuracy of the LES simulation. However, the computational cost

quickly reaches that of a direct numerical simulation as the mesh size decreases. Moreover, mesh B could at least capture
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Name Number of cells Δ𝑥+, Δ𝑧+ Δ𝑦+ Compute time (hr/s)
Mesh A 1.2 · 105 < 180 < 30 10 (on 96 cores)
Mesh B 4.1 · 105 < 120 < 20 30 (on 96 cores)
Mesh C 9.6 · 105 < 90 < 15 50 (on 192 cores)

Table 1 Mesh specifications for mesh dependence study.
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Fig. 2 Simulated and experimental lift coefficient history of a periodically pitching NACA0012 airfoil.

the two essential behaviors of the dynamic stall phenomenon: delayed stall and hysteresis. The stall is known to occur at

an angle of attack between 10◦ and 12◦ when the NACA0012 airfoil is stationary, but the stall occurs at a higher angle

of attack when the airfoil is pitching upward. Once the stall occurs, the flow remains separated during the downward

pitching even at a much lower angle of attack, resulting in the lift coefficient hysteresis. Because a large amount of

CFD data is required to train the lift coefficient prediction algorithm, we will use mesh B to compromise accuracy and

computational cost. Also, we want to mention that a larger spanwise domain size of 0.5𝑐 gives the same result.

Illustrated in Fig. 3 are the snapshots of streamlines during the upward pitching and onset of the dynamic stall. The

streamlines are colored based on the static pressure. The streamlines appear to be crossing each other in some pictures

just because the flow is three-dimensional while we can only take two-dimensional snapshots. From Fig. 3, the flow

is mostly attached to the airfoil surface when the angle of attack is small (𝛼 = 10.6◦). The vortex structure begins to

appear at the leading edge as the angle of attack increases (𝛼 = 16.0◦). Here, a vortex structure is also observed on the

trailing edge. The leading edge vortex structure enlarges as the angle of attack further increases, and eventually gets

separated from the airfoil at an angle of attack between 20.6◦ and 22.4◦. This large vortical structure is often called a

dynamic stall vortex (DSV). The stall is continued at higher angles of attack (𝛼 = 24.6◦) and even during the downward

pitching, resulting in the hysteresis of the lift coefficient shown in Fig. 2. For a more detailed description of the dynamic

stall phenomena and its physics, see experimental studies by Gupta and Ansell [15, 16] and high-fidelity numerical

studies by Martinat et al. [13] or Visbal and Garmann [11].

Figure 4 shows the continuous wavelet transform (CWT) result of the raw static pressure signal from probes 9 and
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Fig. 3 Snapshots of streamlines around the pitching airfoil during the upward pitching and onset of the dynamic
stall.

22 on the suction and pressure side of the airfoil, generated by using MATLAB®’s wavelet toolbox. The colors are in

linear scale. A Morlet wavelet of symmetry parameter 3 and time-bandwidth product 60 was used. The two probes are

in the middle of the airfoil’s suction and pressure sides, symmetrical to the chord line. The lift coefficient history is

placed on top of the CWT results for comparison. Peaks at low frequency 𝑓 = 10− 40 Hz are evident on the suction side

when the airfoil begins to experience stall, while the pressure fluctuation is constantly small on the pressure side. The

reduced frequency 𝑘 = 𝜋 𝑓 𝑐/𝑈∞ of the peak on the suction side is about one, corresponding to the time scale of large

vortex structures such as the DSV. The burst of low-frequency pressure components on the airfoil surface at the onset of

stall and flow reattachment of a dynamically pitching airfoil was also observed in recent experiments by Mayer et al.

[17] and Raus et al. [18]. In our simulation, the peak is much stronger at the stall onset than at the flow reattachment

because the pitching is fast enough that the stall phenomenon is dynamic rather than quasi-steady [14, 18].

III. Lift coefficient prediction under random maneuver
This work aims to forecast the lift coefficient of a randomly maneuvering NACA0012 airfoil. An Ornstein-Uhlenbeck

(OU) process

d𝑋 = (−𝑋 (𝑡)/𝐴 + 𝐵1/2Γ(𝑡))d𝑡 (1)

and its exact numerical solution [30] is employed to model the random maneuvering motion of the airfoil. Here, 𝐴 is the

relaxation time, 𝐵 is the diffusion coefficient, and Γ(𝑡) is a Gaussian white noise while the time step d𝑡 is 0.001 s. The

original Matlab code for solving the stochastic differential equation is developed by Charlebois [31]. The resulting 𝑋 (𝑡)

is then multiplied by the amplitude of the pitching motion 15◦ or the amplitude of the plunging motion 𝑐/2. The OU

process results are then smoothed to prevent the numerical divergence of the LES simulation. The relaxation time and
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Fig. 4 Continuous wavelet transformed static pressure signals from probe 9 and probe 22 of the pitching airfoil.

diffusion coefficient of the process are carefully chosen to keep the speed of the pitching and plunging motion about

and below the speed of the pitching motion tested in Sec. II. For instance, 𝐴 = 0.1 s and 𝐵 = 10 s−2 for the pitching

motion. An exemplary time history of the pitching angle and plunging displacement is depicted in Fig. 5. Here, 𝑍𝑐 is

the z-direction displacement of the airfoil’s center of rotation. The pitching and plunging motions are not strictly kept

within the defined amplitude because the OU process is stochastic.

To forecast the lift coefficient of the airfoil, amplitudes of the dynamic stall’s characteristic frequency ( 𝑓 = 10 − 40

Hz) are fed to a fully connected neural network (FCNN). The FCNN structure is simple:

Input → FC16 → tanh → FC16 → tanh → FC8 → FC4 → FC2 → FC1 → Output. (2)

The inputs to the neural network are 𝛾𝑛 (𝑡) and d𝛾𝑛 (𝑡)/d𝑡, namely the amplitudes of the characteristic frequencies of

the static pressure data acquired from the chosen probes, and their time derivatives. They characterize the onset of

the dynamic stall, its current magnitude, and future trends. The output is the lift coefficient at 𝑡 + Δ𝑡. Both 𝛾(𝑡) and

𝐶𝑙 (𝑡 + Δ𝑡) are moving-averaged for smoothing by a window of size 5 samples to the past. Eight sets of five seconds of

simulation are prepared to train and test the neural network. From the total 40 seconds of simulation, seven sets are used

for training and the remaining 5 seconds of simulation are used to test the prediction algorithm. The first 0.2 s from

each set are omitted from the data to remove the effect of initial condition and transiency which can also be seen in the

first 0.1 s of Fig. 4.
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Fig. 5 An exemplary time history of the random pitching angle and plunging displacement.

While CWT is used in Barthel and Sapsis [26] to extract the characteristic frequency amplitudes, a discrete wavelet

transform (DWT) was adopted in this study because DWT is much faster than CWT and thus is suitable for the real-time

forecast of the lift coefficient. The DWT has also been applied for early warning of faults and failures in various systems,

such as pipelines [32], aircraft spoilers [33], or axial compressors [34], due to its computational efficiency. The window

size is set to 1024 sampling points to the past and DWT is done every 10 time steps. The sampling frequency is 20000

Hz, thus the window size is about 50 ms, and DWT is done every 0.5 ms. A Daubechies-2 wavelet and zero-padding are

used. The amplitudes of the characteristic frequencies 𝛾𝑛 (𝑡) is 𝛾9,𝑛 (𝑡) + 𝛾10,𝑛 (𝑡)/2 where 𝛾9,𝑛 (𝑡) and 𝛾10,𝑛 (𝑡) are the

9th and 10th level DWT coefficients of the 𝑛th pressure probe. Note that 𝛾9,𝑛 (𝑡) and 𝛾10,𝑛 (𝑡) corresponds to frequency

components of 20 − 40 Hz and 10 − 20 Hz, respectively. Its time derivative is calculated by a first-order backward finite

difference, d𝛾𝑛 (𝑡)/d𝑡 ≈ (𝛾𝑛 (𝑡) − 𝛾𝑛 (𝑡 − 𝛿𝑡))/𝛿𝑡 where 𝛿𝑡 is a single time step. The 𝛾𝑛 (𝑡) and d𝛾𝑛 (𝑡)/d𝑡 are linearly

normalized before being fed to the neural network such that their values lie between −1 and 1.

A modified version of output-weighted mean absolute error [35] is used as a loss function for training the neural

network:

MAEOW (�̂�𝑙;𝐶𝑙) =
𝑁∑︁
1

|�̂�𝑙 − 𝐶𝑙 |/𝑁
max(𝜙(±1.5), 𝜙(𝐶𝑙−𝜇𝐶𝑙

𝜎𝐶𝑙

))
(3)

where 𝑁 is the total number of training data, 𝜙 is the probability density of a normal distribution, and 𝜇𝐶𝑙
and 𝜎𝐶𝑙

are

mean and standard deviation of the lift coefficient data for training. The output-weighted loss function is a special kind

of loss function used to emphasize the rare events of large lift coefficients during the training process. The absolute

error of the prediction is divided by the occurrence probability of the training data 𝐶𝑙 so that the prediction becomes

more accurate at high or low lift coefficients which correspond to dynamic stall. In this case, the weight is limited by

1/𝜙(±1.5) = 1/0.13 = 7.7 which is manually tuned to prevent overfitting.
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Fig. 6 The results of the lift coefficient prediction at Δ𝑡 = 1𝜏, 𝑡 = 3𝜏, and Δ𝑡 = 5𝜏

The results of the lift coefficient prediction at Δ𝑡 = 1𝜏, 3𝜏, and 5𝜏 where 𝜏 = 𝑐/𝑈∞ are illustrated in Fig. 6. Pressure

data from probes 4, 7, 28, and 29, which are found to be the optimal sensor locations in Sec. IV, are used. The DWT

and neural network training are done on MATLAB®, using its wavelet and machine learning toolboxes. The predictions

are satisfactory. The 𝑅2 for different values of Δ𝑡/𝜏 are summarized in Fig. 7. Here, 𝑅2 =

√︃∑ (�̂�𝑙 − 𝐶𝑙/�̄�𝑙 − 𝐶𝑙)2 is

a metric for goodness of fit which compares how the model better depicts the data than the mean value. The neural

network is trained five times for each Δ𝑡 and the mean and standard deviation of the 𝑅2 values are calculated. The error

bars in Fig. 7 correspond to ±3 standard deviations. At Δ𝑡 = 5𝜏, the 𝑅2 is about 0.65. The forecasting performance

decreases as Δ𝑡 increases and the drop is larger at greater Δ𝑡. The horizon of the forecast seems to be related to the

relaxation time 𝐴 = 0.1 s ∼ 10𝜏 of the random maneuver. Beyond the relaxation time, the future airfoil motion is

uncorrelated to the current airfoil motion thus the future lift is unpredictable. Also, note a slight difference in the wavelet

transform schemes between this research and Barthel and Sapsis [26]: the entire signal was wavelet transformed together

in the previous research such that future information is merged into the CWT results, especially at low frequencies.

Frequency components of 𝑓 𝑐/𝑈∞ ∼ 0.4, which corresponds to a period of 𝑇 ∼ 2𝜏, was used in the previous research

hence Δ𝑡 = 5𝜏 in this research is comparable to Δ𝑡 = 7𝜏 in Barthel and Sapsis [26].
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Fig. 7 The performance of the prediction algorithm for different values of Δ𝑡.

IV. Strategy for optimal sensor placement
The pressure probes must be optimally placed to use as few sensors as possible. Optimal sensor placement will

reduce the computational cost of DWT, the complexity of the neural network, as well as the manufacturing cost. First, a

greedy sequential sensor selection is conducted by using the 𝑅2 of the trained neural networks to select the most efficient

sensor locations. Given the neural network and a set of previously chosen n(S) pressure probes at the n(S) + 1th sensor

selection step, a new n(S) + 1th pressure probe that best improves the 𝑅2 is added to S. Here, S is the set of chosen

sensors and n(S) is its number of elements. In every sensor selection step, for each candidate pressure probe, the FCNN

has to be trained from its initial state to calculate 𝑅2. This process is repeated, sequentially adding sensors to the airfoil

surface until n(S) reaches the desired number of sensors. A pseudocode for the sequential sensor selection is introduced

in Fig. 8 (a). To get the worst sensor choices, sensors that deteriorate 𝑅2 the most are chosen in every sensor selection

step. Note that Δ𝑡 is fixed during the sensor selection process.

The best and worst choices, corresponding lift coefficient prediction results, and 𝑅2 values to the increasing number

of sensors are shown in Fig. 9. The targeting limit of forecast Δ𝑡 is set to be 5𝜏. The error bars mean ±1 standard

deviation. In the best sensor configuration, the 𝑅2 value improvement is marginal from the third sensor meaning that

only two sensors are enough to predict the lift coefficient of a dynamically stalling airfoil. The first three probes, namely

probes 29, 4, and 28, are located around the leading edge where DSV is generated and detached. The fourth sensor,

probe 7 is relatively far from the leading edge but the effect of the fourth sensor is minimal. On the other hand, when

sensors are placed near the trailing edge or at the very front of the leading edge where the flow is not so relevant to the

generation and detachment of DSV, e.g. probes 2, 16, 18, and 15, the 𝑅2 can reach negative values. Figure 9 (b) shows

that the forecasting completely fails when the worst sensors are chosen.

Although this approach for optimal sensor placement is computationally less burdensome than the global search

algorithm that has to test all cases, e.g. 30!
26!4! = 27405 cases for four sensors, it is still a time-consuming job because the

neural network has to be trained every sensor selection step for each S∪ {𝑚}. The computation is especially burdensome
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S = { }   % Current selection of sensors

while n(S) < Desired number of sensors

    C = SC  % Candidates of new sensor selection

    for m ∋ C

        Train the NN by using sensors in S ∪{m}

        Calculate average R2

    end

    if we are looking for the best configuration

        Choose mmax with the highest R!

        S = S ∪ {mmax}

    if we are looking for the worst configuration

        Choose mmin with the lowest R2

        S = S ∪ {mmin}

    end

end

(a) (b)

S = { }   % Current selection of sensors

while n(S) < Wanted number of sensors

    C = SC  % Candidates of new sensor selection

    for m ∋ C

        Calculate the loss function

    end

    Choose mmin with the smallest loss function

    S = S ∪ {mmin}

    

end

Fig. 8 Pseudocodes of the greedy sensor selection algorithms using (a) the 𝑅2 of the trained neural networks
(NN) and (b) the proposed loss function.

when we have a lot of training data and when we want an average of 𝑅2. In our case, the neural network has been

trained five times for each S ∪ {𝑚} to get the average 𝑅2. Therefore, a fast offline strategy for optimal sensor selection is

also desirable. In the context of greedy sequential sensor selection, the newly added pressure probe at every step must

contain information relevant to the lift coefficient variation while containing new information as well. This means that

the sensor selection is a dual-objective optimization problem: relevancy and novelty. To choose one sensor from the

Pareto front composed of yet-to-selected sensors, a loss function that balances the two objectives should be devised:

−𝐿 (𝛾𝑛;𝐶𝑙,Δ𝑡 , 𝛾𝑚∈S) =
|𝜌(𝛾𝑛, 𝐶𝑙,Δ𝑡 ) |

max𝑛∈C ( |𝜌(𝛾𝑛, 𝐶𝑙,Δ𝑡 ) |)
− max𝑚∈S ( |𝜌(𝛾𝑛, 𝛾𝑚) |)

max𝑛∈C (max𝑚∈S ( |𝜌(𝛾𝑛, 𝛾𝑚) |))
. (4)

Here, 𝛾𝑛 is the DWT coefficient of 𝑛th sensor that is under consideration, 𝛾𝑚∈S is the DWT coefficients of the already

chosen n(S) sensors, C is the complement of S, and 𝜌(·, ·) is the correlation coefficient. The first term represents the

relevance between the 𝑛th probe’s DWT data at 𝑡 and the lift coefficient at 𝑡 + Δ𝑡, while the second term stands for the

relevance between the 𝑛th probe and previously chosen n(S) sensors. The second term is subtracted to enhance the

novelty of the newly added information. The denominators are included to normalize each term for fair balancing.

Again note that Δ𝑡 is fixed depending on the targeting limit of the forecast. The probe with the smallest loss function 𝐿

is chosen in every sensor selection step. The pseudocode, which is similar to that of Fig. 8 (a) is introduced in Fig. 8 (b).

The chosen sensor locations are illustrated in Fig. 10 (a) together with the reference result of the 𝑅2-based greedy

approach. The targeting limit of forecasting Δ𝑡 is set to be 5𝜏. The case in which only the first term of Eq. 4 is considered
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Fig. 9 (a) The best and worst sensor placements on the airfoil, (b) corresponding lift coefficient prediction
results at Δ𝑡 = 5𝜏, and (c) 𝑅2 values to increasing number of sensors at Δ𝑡 = 5𝜏.
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for the loss function, i.e.

−𝑙 (𝛾𝑛;𝐶𝑙,Δ𝑡 ) =
|𝜌(𝛾𝑛, 𝐶𝑙,Δ𝑡 ) |

max𝑛∈C ( |𝜌(𝛾𝑛, 𝐶𝑙,Δ𝑡 ) |)
(5)

is also shown for comparison. This means that the information from the newly added sensor doesn’t have to be novel.

The corresponding 𝑅2 values are also illustrated in Fig. 10 (b). Again, the error bars mean ±1 standard deviation. When

Eq. 4 is used for the loss function, the first three chosen probes are more or less the same as the reference, located around

the leading edge of the airfoil. The difference is that the fourth sensor, probe 3, is also located around the leading edge,

while the reference fourth sensor, probe 7, is located relatively away from the leading edge. But probe 3 is still not a

bad choice; given the first three sensors (probes 4, 29, and 27), the 𝑅2 after adding the fourth sensor can vary between

0.656 (probe 6) and 0.566 (probe 1) while probe 3 gives 𝑅2 = 0.647. On the other hand, when Eq. 5 is used for the

loss function, the first three sensors, probes 4, 3, and 5, are clustered on the upper side of the airfoil. The forecasting

performance is not improved until a piece of new information is added by the fourth sensor, probe 27. We believe it’s

worth mentioning that the sensors are fairly placed on both sides of the airfoil for the best performance in our research

because the angle of attack varies between ±15◦. The pressure and suction sides interchange during the maneuvering,

although not perfectly symmetric. If this is not the case, the best sensor placement could be inclined to the suction side

of the airfoil where the important fluid dynamics appear.

The existence of optimal sensor locations differs from what was observed in quasi-periodic situations where no

sensor location was superior to the others [26]. Figure 11 depicts the performance of the neural network trained and

tested on a periodically pitching airfoil of Sec. II. 1.5 seconds of data are used for training and another 1.5 seconds for

testing. The performance of the best sensors (4, 7, 28, 29) and the worst (2, 15, 16, 18), selected based on the randomly

maneuvering airfoil data, are compared. The error bars represent the standard deviations. The 𝑅2 values are more or

less the same and this partially explains why fast sensor selection strategies didn’t work successfully in Barthel and

Sapsis [26]. Also, note that the 𝑅2 values don’t deteriorate significantly even if Δ𝑡 increases when the flow is periodic.

V. Concluding remarks
This work aims to forecast the lift coefficient of an airfoil randomly maneuvering under dynamic stall conditions by

using the surface pressure data, to maximize the efficacy of various dynamic stall suppression schemes. An FCNN

coupled with DWT for forecasting the lift coefficient using the pressure data from probes on the airfoil surface is

proposed. The data for training and testing the neural network is acquired from the LES simulation. It is demonstrated

that low-frequency components corresponding to the large vortex structures are amplified during the onset of dynamic

stall and that the DWT coefficients corresponding to these characteristic frequencies are good predictors of the lift

coefficient. The forecast and the actual time series of the lift coefficient showed good agreement of 𝑅2 about 0.65 at the

forecasting limit of Δ𝑡 = 5𝜏.
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Certain sensor locations are found to be more informative than others in such randomly fluctuating flow, unlike in

quasi-periodic situations. A fast sequential sensor placement strategy is also proposed. The criterion of the sequential

sensor selection is specially designed to balance the newly added data relevance to the future lift coefficient and novelty

compared to the already chosen sensor data. The study shows that two pressure sensors located on the upper and lower

sides of the airfoil, near the leading edge where important flow structures appear, are enough to predict the lift coefficient

of the near future.

While the results are favorable, further experimental validation preferably at higher freestream velocity is necessary

since our research is solely based on computational modeling. Randomly varying freestream velocity could also be

incorporated in future research. Moreover, it is worth mentioning that the characteristic frequency utilized in this work

is a consequence of the dynamic stall phenomenon rather than its driving mechanism. Though we could not capture

the small turbulence structures due to our limited CFD fidelity, there certainly exists smaller vortex structures that

precede the large vortex structures [16, 36]. We prospect to further increase the forecasting limit by utilizing the smaller

turbulence structures that trigger the instability, which remains a topic of future research.
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