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Abstract
The establishment of wave energy technologies faces significant challenges regarding their

survivability in extreme ocean conditions. A crucial aspect in designing reliable systems lies in
quantifying the statistics of extreme forces exerted on structures. However, predicting these
rare events poses a challenge due to limited available data and inherent uncertainty. While
computational fluid dynamics (CFD) models can capture extreme forces in wave-structure
interactions, obtaining statistical information using these models is computationally impractical.
This study addresses the computational cost and challenges associated with quantifying extreme
events by introducing a framework that combines novel schemes in Bayesian experimental
design (BED) with machine learning techniques. The framework develops a surrogate model
that maps extreme sea states and structural characteristics of a wave energy converter to the
force in the mooring system. In the initial phase of the study, a hybrid surrogate model is
constructed by combining two machine learning techniques: Gaussian process regression (GPR)
and long-short term memory (LSTM) neural networks. This hybrid model is trained using
data derived from CFD simulations, enabling it to learn the intricate input-output relationship.
In the subsequent phase, an active learning approach is employed to construct an effective
surrogate model that requires the most informative training data points. The active learning
scheme in BED guides the sequential sample selection process by identifying parameter space
regions that induce extreme forces while reducing model uncertainty. This study demonstrates
the capability of machine learning to predict complex time series, including instantaneous peaks,
at magnitudes much faster than classical modeling practices. Additionally, the carefully selected
training samples expedite the convergence of the surrogate model, which ultimately provides
accurate statistics of extreme forces. This framework offers a favorable and innovative approach
for real-world applications where each sample evaluation demands significant time and resources.
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Moreover, the resulting surrogate model can be integrated into the design stage to (1) enable
cost reduction by determining appropriate strength margins and adjusting conservative safety
factors and (2) enhance system reliability. Furthermore, this framework holds potential for
optimizing designs in various other real-world applications.

Keywords– Extreme events; Gaussian process regression (GPR); LSTM neural networks;
surrogate models; active sampling; sequential Bayesian experimental design; wave energy system;
CFD simulations

1 Introduction
Ocean waves hold immense potential for global electricity production [6], yet the current capacity of
active wave power remains limited. Although numerous wave energy conversion systems have been
conceptualized, the majority have not yet reached commercial viability [12,16,35]. To become a com-
petitive large-scale energy technology, wave energy converters (WECs) must overcome fundamental
challenges. One of the foremost obstacles is ensuring their robustness and survivability in extreme
ocean conditions. Under such conditions, critical components like mooring lines can experience loads
that are up to 100 times higher than the average [8]. Therefore, quantifying the statistics of extreme
force-on-structure is crucial for informing optimal design choices in terms of reliability and cost.
This entails estimating the probability density function (PDF) that includes the tails representing
the extreme events. By gaining insights into these extreme force statistics, researchers and designers
can pave the way towards enhancing the resilience and performance of wave energy systems.

When investigating the dynamics of offshore structures in the presence of high and steep
waves, nonlinear phenomena such as breaking waves, viscous effects, and wave overtopping play a
crucial role as they give rise to extreme loads on the structure. While high-fidelity computational
fluid dynamics (CFD) simulations enable accurate modeling of force-on-structure in extreme ocean
conditions [18,19,22,40,53], their computational cost is prohibitively expensive, making it impractical
to analyze the statistics of extreme forces using these models. On the other hand, frequency-domain
models based on linear potential flow theory offer faster solutions but fail to capture the non-linear
dynamics [5], rendering them unsuitable for studying the extreme responses of wave energy converters
(WECs). Linear time-domain models are often employed in the preliminary design phase due to
their computational efficiency, allowing for the study of WEC dynamics [17, 48, 54]. However, it
should be noted that these models are susceptible to solution uncertainties stemming from nonlinear
extreme wave phenomena [2,53]. Thus, there exists a need to strike a balance between computational
efficiency and accuracy in modeling extreme WEC responses, considering both nonlinear effects and
computational feasibility.

Surrogate models prove invaluable in cases that demand a balance between accuracy and reduced
computational cost, such as statistics reconstruction. These models serve as statistical approximations
of physical systems by learning the relationship between input variables and corresponding output
variables [46]. In recent years, machine learning techniques have gained popularity for constructing
surrogate models. Notably, several studies have implemented surrogate models in offshore engineering
applications. For instance, GPR [14] and deep neural operators [38] have been utilized to capture ship
load statistics in irregular seas. Artificial neural networks have been employed to develop surrogate
models for estimating fundamental frequency [39], fatigue damage [29], and dimensioning [44] of
offshore wind turbine structures. Other studies have utilized generalized polynomial chaos [33] and
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LSTM neural networks [50] to predict the dynamic mooring force in floating structures. While
limited in number, there are also studies that focus on surrogate modeling for wave energy converter
(WEC) applications. In one case, an LSTM neural network-based surrogate model was developed to
estimate the WEC output power [34]. Similarly, deep learning techniques were employed to control
the energy absorption of WECs in other studies [1, 28]. Finally, digital twins for WEC systems were
developed in [20,30]. These examples demonstrate the growing application of surrogate models in
various aspects of offshore engineering, including WEC systems.

The limited availability of data on extreme events presents a significant challenge in constructing
surrogate models that accurately predict these rare occurrences. Existing methods for surrogate
model construction often rely on random sampling from biased distributions in regions of the input
space associated with extreme outcomes, without considering the associated costs and efficiency of
obtaining the training samples [45]. However, active learning (AL) offers a promising solution by
sequentially selecting the most informative training samples, thereby circumventing the need for a
massive amount of data. AL has proven to be an effective scheme within the context of Bayesian
experimental design (BED), particularly for uncertainty quantification of response probability density
function (PDF) estimates in nonlinear dynamic systems, utilizing Bayesian compressive sampling
techniques [23,24]. Despite its potential, only a few studies have explored the application of AL to
extreme event statistics, emphasizing the significance of acquisition functions [3, 4, 32, 38, 42, 43]. For
instance, in [13,38], AL was applied to investigate the structural response of ships under random
waves. Similarly, leveraging AL in combination with machine learning techniques presents a promising
and innovative approach for addressing the challenges faced by emerging wave energy technologies.

This work presents a framework that combines machine learning techniques with Bayesian
experimental design (BED) to develop an effective surrogate model for wave energy converter (WEC)
systems. The main contribution lies in accurately estimating the extreme force statistics by carefully
selecting samples. In the first part of the study, two machine learning techniques, the GPR and
LSTM neural networks, are employed to construct a hybrid surrogate model. This model captures
the relationship between the inputs, such as wave episodes from 50-year extreme sea states and
structural system parameters, and the output, which represents the force in the mooring system.
The second part of the study focuses on guiding the selection of informative training samples, in this
case wave episodes, for the surrogate model. By leveraging the active learning (AL) scheme within
BED, the framework identifies the most relevant samples from regions in the input parameter space
associated with extreme forces and higher uncertainty. This approach optimizes the use of resources
and time in practical applications. The novelty of this study lies in its effective practices, which
overcome limitations of previous approaches, in two key areas: (1) modeling the wave energy system
and (2) accurately estimating the extreme force statistics. By enhancing the optimal design process
of wave energy technologies, the presented method accelerates their development and establishment,
by providing an efficient and accurate method for modeling and predicting extreme forces in wave
energy systems, ultimately facilitating the advancement and implementation of these technologies.

The paper structure is as follows: Section 2 serves as an introduction by providing a comprehensive
review of the methods utilized in this research. Section 3 delves into the specific wave energy
application, offering a detailed description of the WEC system under investigation. The formulation
of the hybrid surrogate model, combining two machine learning techniques, is presented in section
4. This section outlines how these techniques are coupled to create an accurate model of the wave
energy system. Section 5 focuses on the active learning scheme in conjunction with machine learning
techniques for the construction of an effective surrogate model. It highlights the methodology
employed to select informative training samples and reduce prediction uncertainty. In section 6, the
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results of the study are presented, showcasing the performance and capabilities of the developed
surrogate model in predicting extreme force statistics. Finally, section 7 summarizes the key findings
and draws meaningful conclusions based on the study’s outcomes.

2 Background on Machine Learning Methods
2.1 Surrogate Modeling
From the modeling perspective, the physical system can be viewed as a ‘black-box’ that relates
the input, x ∈ X , which can be any stochastic variable, to the output, y, which represents the
corresponding quantity of interest. The black-box constitutes the real function, y = f(x), which
characterizes the input-output relationship. The real function f(x) can be approximated with a
surrogate model f̂(x), which is a statistical model that learns the input-output relationship based
on training data sets of known input-output pairs. Recently, machine learning techniques have been
widely employed for the surrogate construction. The advantage of the surrogate modeling compared
to classical modeling practices, e.g. CFD simulations, is that the output ŷ∗ for any new input x∗
is provided in orders of magnitude faster. In sections 2.2 and 2.3, two popular machine learning
techniques are presented while the developed active learning technique for training samples selection
is described in section 2.5.

2.2 Gaussian Process Regression
GPR is a powerful class of supervised machine learning algorithms that is able to create surrogate
models for predicting a quantity of interest, y, based on input independent variables, x. In many
applications, the output is a noisy realization of the GPR defined function f̂(x),

y = f̂(x) + ϵ. (1)

where the noise is Gaussian, ϵ ∼ N(0, σ2
n). For a random variable x, the function f̂(x) follows a

Gaussian distribution
f̂(x) ∼ GP (m(x), k(x, x′)) . (2)

Unlike other machine learning methods that learn exact values for every parameter in a function, the
GPR implements Bayesian approach to infer a probability distribution over functions by defining
the mean function, m(x), and the covariance function, k(x, x′), of the process f̂(x) at any point x ∈
Rd [51].

m(x) = E
[
f̂(x)

]
, (3)

k(x, x′) = E[(f̂(x) − m(x))(f̂(x′) − m(x′))]

The GPR based surrogate model learns the input-output behavior from available training datasets.
Assume the training dataset Dtrain of n observations, and testing dataset Dtest of n′ observations

Dtrain = (X, y) = {xi, yi}n
i=1, xi ∈ Rd, y ∈ R, (4)

Dtest = X∗ = {x∗,i}n′

i=1, x∗,i ∈ Rd.
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According to the prior distribution, the joint distribution of the training outputs, y, and the test
outputs, y∗ is [

y
y∗

]
∼ N

(
0,

[
K(X, X) + σ2

nI K(X, X∗)
K(X∗, X) K(X∗, X∗)

])
, (5)

where K(X, X), K(X, X∗), K(X∗, X∗) denote the n × n, n × n′, n′ × n′ covariance matrices.
However, the posterior distribution can provide more accurately information about the prediction,
y∗. The posterior distribution is defined by conditioning the joint Gaussian prior distribution on the
training outputs y, training inputs X and test inputs X∗. Therefore the posterior distribution at
X∗ is defined with mean, ȳ∗, and variance, σ2

ȳ∗ = K(X∗, X)[K(X, X) + σ2
nI]−1y, (6)

σ2 = K(X∗, X∗) − K(X∗, X)[K(X, X) + σ2
nI]−1K(X, X∗). (7)

An advantage of GPR is the ability to provide measurements about the model epistemic uncertainty,
i.e., caused due to lack of data, while the term σ2

n presents the aleatoric uncertainty.

2.2.1 Covariance function

The covariance functions (also called kernels) express some form of distance or similarity, specifying
how much two random variables change together. If the inputs x and x′ are close to each other, it is
expected that f(x) and f(x′) will be close as well. For variables with inputs which are very close the
covariance is almost unit, while the covariance decreases as the distance in the input space increases.

cov(f(x), f(x′)) = k(x, x′) (8)

The covariance function can be defined by various kernel functions. In this work, the squared
exponential covariance function is utilized which is given by:

k(x, x′) = σ2
f exp

(
− (x − x′)2

2l2

)
(9)

where σ2
f is the signal variance, that is a scale factor and determines the variation of the function

from its mean values, l > 0 is the lengthscale and determines how reliable the function fits the
training data. These are free parameters and together with the noise variance, σ2

n, constitute the
GPR hyperparameters; θ = (l, σf , σn). In this case the kernel function utilizes separate length scale
for each predictor, the Automatic Relevance Determination (ARD) squared exponential kernel is
defined as

k(x, x′) = σ2
f exp

[
−1

2

d∑
n=1

(xn − x′
n)2

l2
n

]
= σ2

f exp
(

−1
2(x − x′)⊤L−1(x − x′)

)
(10)

where L−1 = diag(ln)2 and the dimension of the hyperparameters increases to d + 1; θ =
(l1, l2, ..., ld, σf , σn).

2.2.2 Hyperparameter optimization

The accuracy of the GPR-based model significantly depends on the hyperparameters, θ, value.
The hyperparameters are defined via an optimization procedure by maximizing the log marginal
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likelihood, which is given by

log p(y|X, θ) = −1
2y⊤[K(X, X) + σ2

n]−1y − 1
2 log[K(X, X) + σ2

n] − N

2 log 2π. (11)

The derivatives of the log marginal likelihood with respect to θ are computed and the hyperparameters
are updated using gradient descend method.

2.3 Long-Short Term Memory Neural Networks
Recurrent Neural Networks (RNNs) are networks with loops allowing information to persist; connect
previous information to the present task. The LSTM neural network is a type of RNN that models
temporal sequences and is capable to learn long-term dependencies. The LSTM is designed to avoid
the exploding/vanishing gradient descent problem that usually appears in the RNNs. The LSTM
uses two separate paths to make predictions, i.e.; one path is for long-term memories and one for
short-term memories. Unlike to a typical RNN, the LSTM is based on a much more complicated unit,
see Figure 1. In addition, the LSTM uses sigmoid and hyperbolic tangent activation functions. A
reminder for the reader, the sigmoid activation function takes any value and convert it to a number
between 0 and 1, while the hyperbolic tangent activation function turns the value to a number
between -1 to 1.
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Figure 1: The structure inside an LSTM unit.

In Figure 1, the green line on the top of the LSTM unit is called the cell state and represents
the long-term memory. Although the long-term memory can be modified by multiplication and
addition, there are no weights and biases that can modify directly its value. This characteristic
allows the long-term memory to flow through a series of units (Figure 2) without facing the issue of
exploding/vanishing. The ct−1 is the long-term memory previous time step and the ct is the new
long-term memory for the current time step. The red line on the bottom of the LSTM unit is called
the hidden state and represents the short-term memory. The ht−1 is the short-term memory from
the previous time step and the ht is the new short-term memory and it is the output of the LSTM
cell. The short-term memory (or hidden state) is directly connected to weights that can modify its
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value. The long- and short-term memories interact through the gates and result in predictions. First,
in the forget gate, the short-term memory of the previous time step, ht−1 is combined with the
input, xt, using the weights and biases and the outcome is plugged in the sigmoid, σ, activation
function. The sigmoid activation functions turns the value into a number between 0 and 1, ft, which
is then multiplied by the previous step long-term memory, ct−1. In practice, the forget gate of an
LSTM unit determines what percentage of the long-term memory is remembered. Second, the new
long-term memory, ct, is defined through the input gate. The right side of the input gate, that
contains the hyperbolic tangent, tanh, activation function combines the short-term memory and
the input using weights and biases to create a potential long-term memory, c̃t. The right side of
the input gate that contains the sigmoid, σ, activation function determines what percentage, it, of
this potential long-term memory is added to the previous long-term memory, ct−1. After this stage,
the new long-term memory is defined, ct. Third, the new short-term memory of the LSTM, ht, is
finally updated though the output gate. The new long-term memory, ct, is used as input in the
hyperbolic tangent, tanh, activation function which then provides the potential short-term memory,
h̃t. However, the left side of the output gate that contains the sigmoid, σ, activation function has to
decide the percentage, ot, of this potential short-term memory, h̃t, to pass on. Similar logic has been
previously used in the forget and input gates. The combination of the outcome of the two activation
functions determine the new short-term memory, ht, which is the output of the entire LSTM unit.
Equations (12)-(18) show the mathematics at each gate and the definition of the new long- and
short-memories.

Forget gate: ft = σ (Wf · xt + Uf · ht−1 + bf ) (12)
Input gate: it = σ (Wi · xt + Ui · ht−1 + bi) (13)

c̃t = tanh (Wc · xt + Uc · ht−1 + bc) (14)
Cell state output: ct = it ∗ c̃t + ft ∗ ct−1 (15)

Output gate: ot = σ (Wo · xt + Uo · ht−1 + bo) (16)
h̃t = tanh (ct) (17)

Hidden layer output: ht = ot ∗ h̃t (18)

where Wf , Wi, Wo, Wc are the weight matrices of the input xt, Uf , Ui, Uo, Uc are the weight
matrices of the hidden state ht−1, and bf , bi, bo, bc are the bias terms. The σ represents the sigmoid
function and tanh represents the hyperbolic tangential function.

LSTM1 LSTM2 LSTMn…

x(t1) x(t2) x(tn)

C0 C1 CnC2 Cn-1

h0 h1 h2 hn-1
hn

Figure 2: An LSTM layer that consists of n LSTM units.

The above description refers to a single LSTM unit that accepts as input the value for one time
step. As shown in Figure 2, to make a prediction based on a sequence of inputs, x(t1, t2, ..., tn), a
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sequence of LSTM units is created which constitutes the LSTM layer. In this case, each unit accepts
the value assigned to a certain time step. In the current study, one LSTM layer is sufficient to predict
the output. However, more layers can be used for more complex predictions but the model becomes
difficult to train. The LSTM layer is then connected to a linear layer that takes the LSTM output -
new short-term memory, ht, - and calculates the final output, yt, which is the actual mooring line
force,

yt = W · ht + b (19)

where W is the weight matrix and b is the bias term. The LSTM model of this study is built using
Keras which is a high-level, deep learning Application Programming Interface (API) for implementing
neural networks written in Python. Keras is the high level API of TensorFlow platform which is
used to build machine learning models.

The goal of the prediction is to identify the mooring line force time series based on the solution
provided by GPR model. That is to say, the LSTM model accepts as input the mooring force which
has been previously predicted from the GPR model and learns how to improve it in order to provide
the actual mooring line force that matches the CFD results. The GPR-based mooring force is the
only feature that the LSTM model considers for the prediction and thus the parameter number of
features in Keras library is set equal to one.

2.3.1 Loss function

Deep learning neural networks (including LSTM) are usually trained using the gradient descent
optimization algorithm. At the training process, the error of the model is repeatedly estimated
through the loss function and the weights and biases of the model are constantly updated to reduce
the loss function error in the next iteration.

At this stage, the LSTM model is trained to match the mooring force time series predicted by
the GPR model to the real solution, e.g., from CFD simulations. The LSTM model is called to
accurately predict the peaks (extremes) in the force time series, therefore, the loss function should
be properly selected. The Mean Absolute Error (MAE) is an appropriate loss function as it is more
robust to outliers. The MAE is calculated as the average of the absolute difference between the
predicted and actual values. Specifically, in the LSTM training, the MAE loss function takes the
form

MAE = 1
b

1
t

b∑
i=1

t∑
j=1

|ŷj − yj |i (20)

where ŷ is the LSTM prediction and y is the CFD solution. As it is explained in section 4.2, for
LSTM training purposes the datasets is split into b batches and each batch comprises of t time
steps. The error between the predicted and the real output is computed for each time step, j, and
the batch-average error is calculated. Finally, the overall loss function MAE is the average of the
batch-average errors.

2.4 Dimension Reduction
Although supervised machine learning methods for time series forecast have been recently become
very popular, e.g. LSTM, many of the current methods, e.g. GPR, model the relationships between
the finite vector dependent variable (output) and one or more explanatory values (inputs). In
this study, the output is a time series, not a vector quantity. In order to fit the output into the
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mapping framework of the GPR method, the time series is represented as a low dimensional vector
by employing a dimension reduction technique. Specifically, for the mooring force time series, y(t),
the following reduced order representation is employed

y(t|x) =
n∑

i=1
qi(x)µ̂i,T (t), t ∈ [0, T ]. (21)

where qi(x) are the reduced order coefficients which are functions of input vector x, µ̂i,T (t) are
the eigenvectors of the force matrix, and n is the number of output modes that describe the force.
For this problem, the output coefficients are computed by applying Principle Component Analysis
(PCA) to the available training data from CFD simulations, i.e., a set of mooring force time series
associated with particular sea states and WEC structural characteristics. Further explanation about
the choice of output modes, n, is provided in section 4.1.

As shown in Figure 5 (Right), a hybrid surrogate model is developed by coupling two machine
learning techniques into a hybrid surrogate model; the GPR which provides the input-output map
of scalar quantities and the LSTM neural network that is able to handle time series prediction. As it
is proven later, the latter method complements the former for achieving better prediction accuracy.
The GPR supervised machine learning method provides the map function for each coefficient, qi, to
the input vector, x. Further explanation can be found in section 3.3 and section 4.

2.4.1 Principal component analysis

Many techniques address the problem of reducing the dimensionality of time series data, and differ
based on the assumptions they make on the underlying data generating process. For this problem,
where the mooring force time series is smooth over a finite interval, we use PCA, sometimes referred
to as Karhunen-Loève (KL) decomposition or proper orthogonal decomposition (POD) [11].

The first pre-processing step is to project the numerical mooring force sequence data obtained
from the CFD simulations, y(t), onto a fixed grid with p equally spaced time instants via interpolation.
In this case, the force sequence, y(t), consists of p points where point al,j is the mooring force for the
lth examined data series out of the m datasets at jth time instant. This step is especially important
because many CFD solvers internally use variable time steps following the Courant–Friedrichs–Lewy
condition [7]. To avoid interpolation issues, the projection time step should be smaller than the
typical smallest CFD step. However, too small a time step, will slightly complicate LSTM neural
network training, but this is discussed in section 4.2.

Once every data series has been projected onto a common grid trough interpolation, each
vector is assembled into a m × p data matrix A [49]. PCA is a statistical procedure that maps the
p–dimensional features (which are probably correlated) into a set of values of linearly uncorrelated
variables (principal components). These components are ordered by the fractions of the total signal
variance they contain. By keeping only the most important components, and dropping the less
significant terms, the dimension of the signal may be reduced without significant loss of information.

The covariance matrix C = A⊺A may be expressed as a product of three matrices via singular
value decomposition (SVD) as

C = USV ⊺ (22)

where U is an m × m unitary matrix, S is an m × p diagonal matrix, and V is an p × p unitary
matrix. The columns of U are the eigenvectors ul of AA⊺ and the columns of V ⊺ are the eigenvectors
vj of A⊺A. The diagonal matrix S has r elements equal to the root square of the eigenvalues of AA⊺
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or A⊺A (both have the same eigenvalues), si. Further, it is assumed that the paired eigenvectors
and eigenvalues are ordered in descending value of si, which is always possible by inserting a unitary
(rotation) matrix R with the expression UR⊺RSR⊺RV ⊺. Finally, because the covariance matrix is
positive semi-definite, the eigenvalues si are real and non-negative.

The PCA transform is the linear projection of the original mooring force data (interpolated onto
the common grid) onto the orthonormal eigenbasis defined by the vj vectors. It has the property that
the first PCA mode contains the maximum fraction of energy (in the L2 sense) among all possible
linear projections, and the second mode has maximum energy among basis vectors orthogonal to the
first mode, and so on. In particular, the energy component of each mode i is given by the eigenvalue
si, and the total energy of the signal is given by

∑r
i=1 si.

For a data series that consists of points al,j , we project onto the PCA basis using the relation

q̃i =
p∑

j=1
al,jvj,i

where vj,i is the point at the column vector of matrix V ⊺. However, in order to normalize our data
with the eigenvalues si, we instead use the modified projection

qi =
p∑

j=1
al,j

1
√

si
vj,i, (23)

with with the qi are unitless and order one. We emphasize that dimensionality reduction using PCA
is not “physics aware" and is entirely data driven. If a different data set were considered, simulated
with a different set of focused waves, the recovered PCA modes will vary somewhat. However,
previous work has found that PCA works well for ML applications involving structural responses to
wave forcing [14].

2.5 Active Learning
The question that arises at this point is how to select the samples for training the surrogate model in
order to (1) provide accurate predictions – especially for extreme events – (2) while considering the
difficulty to obtain the training samples. In conservative sampling approaches, the physical system
(i.e. black-box function) is queried at a large number of input points, however, this approach is
time and resources prohibitive as it translates to massive high-fidelity simulations and/or physical
experiments.

This section presents a methodological framework that combines the active learning scheme
in BED with machine learning techniques to effectively construct a surrogate model. As shown in
Figure 3, the surrogate is trained on sequentially selected datasets of input–output pairs, Dt =
{Dt−1 ∪ (xt, yt)}, where t is the number of sampling iterations. That is to say, the next-best
sample is determined through a procedure that actively discovers and sequentially selects the most
informative training samples from the input parameter space, X . These samples maximally reduce
the surrogate model’s uncertainty while simultaneously maximizing the information about extremes.
This preference, that each data point is maximally informative, directly addresses the main practical
limitation of obtaining large datasets from CFD simulations.

Algorithm 1 formalizes the iterative steps for efficiently training the surrogate model following
the active learning technique. The constructed surrogate is a computational cheaper model and
allows for massive samples evaluation, therefore, it can be finally used to forecast and quantify the
extreme event statistics in the dynamic system.
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Figure 3: Estimation of the output mean value, ȳ(x), for any input, x, from the developed
surrogate model. Left: The surrogate model is constructed based on the dataset Dt−1 =
{(x1, y1), (x2, y2), ..., (xt−1, yt−1)}. Right: The active learning sampling chooses a new optimal
sample, xt, that reduces the surrogate model’s uncertainty and provides accurate prediction about
extremes.

Algorithm 1 Sequential search for active training of surrogate model.
1: Input: Number of iterations, titer

2: Initialize: Train the surrogate model on initial dataset of input-output pairs, D0 = {xi, yi}tinit
i=1

3: for t = 1 to titer do
4: Select next sample xt by maximizing acquisition function α(x):
5:
6: xt = arg max

x∈X
(α(x; y), Dt−1)

7:
8: Evaluate black-box function (real system) at xt and record yt

9: Augment dataset: Dt = Dt−1 ∪ {xt, yt}
10: Retrain surrogate model
11: end for
12: return Final surrogate model
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2.5.1 Acquisition functions

The acquisition function is the fundamental component of the active learning algorithm as it guides
the exploration and exploitation of the input parameters space, X , and determines what is the
’next-best’ sample to query the black-box function. The choice of acquisition function is critical as
different acquisition functions are appropriate for different features of the quantity of interest. In
this study, two acquisition functions are examined; the uncertainty sampling (US) and the likelihood
weighted uncertainty sampling (LW-US).

Uncertainty sampling: The US is one of the most common acquisition functions and identifies
the ’next-best’ sample for which the GPR model presents the highest predictive variance,

αUS(x) = σ2(x). (24)

The US ensures that the uncertainty of the model is evenly distributed over the input space and its
popularity lays on its straightforward implementation, inexpensive evaluation, analytic gradients
that allow the use of gradient-based optimizers. However, the US acquisition function has usually
the tendency to select points on the boundaries of the input space because the variance is often
greater in regions where less data have been previously collected [3]. This does not necessarily mean
that the close-to-boundaries region provides the most informative samples.

Likelihood-Weighted Uncertainty Sampling: The LW-US acquisition function drives the
sample selection towards regions where the model prediction has high uncertainty yet extreme events
have high likelihood to occur [3,42]. In practice, the LW-US is the US acquisition function multiplied
by the likelihood-ratio, w(x),

αUS−LW (x) = σ2(x)w(x). (25)
The likelihood-ratio, w(x), quantifies the importance of the output relative to the input,

w(x) = px(x)
pȳG (ȳG(x)) , (26)

where pȳG denotes the PDF of the GPR posterior mean, ȳG , and px is the PDF of the input
parameters, x. The px is usually referred to as nominal distribution and pȳG importance distribution.
The likelihood ratio acts as a sampling weight that balances events that are probable to occur
and those that are extreme. For instance, for data in the input space that have similar probability
of being observed (same px), the likelihood ratio assigns more weight to those that are likely to
relate with rare/extreme events (small pȳG ). Conversely, for samples that have similar probability for
extreme/rare events (same pȳG ), it promotes those with higher probability of occurrence (larger px).

The importance distribution, pȳG , is estimated at every iteration in Algorithm 1. A large number
of data, {xk}M

k=1, are chosen from the input space via Latin hypercube sampling (LHS). These
samples are evaluated through the GPR model and the posterior mean, ȳG , is estimated for every
input. The PDF pȳG is constructed via the kernel density estimator (KDE). Algorithm 2 describes
precisely the steps for the definition of the importance distribution pȳG .

3 Wave Energy System in Extreme Sea States
This study focuses on developing a hybrid surrogate model that estimates the force exerted to
the mooring line of a wave energy converter. This estimation takes into account the varying (i)
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Algorithm 2 Computation of the importance distribution, pȳG .
1: Input: GPR model and nominal distribution, px(x)
2: for do
3: Draw a large number of samples, {xk}M

k=1 via LHS
4: Evaluate the samples through the GPR model to obtain the posterior mean values {ȳGk

}M
k=1

5: Perform KDE on the outputs, {ȳGk
}M

k=1, and obtain the PDF pȳG

6: For a particular input-output pair (x, ȳG(x)), the corresponding density value, pȳG (ȳG(x)), is
defined by the PDF constructed at the previous step.

7: end for
8: return Importance distribution pȳG (ȳG(x))

site-specific extreme wave conditions and (ii) parameters related to the Power Take-Off (PTO)
system. To provide context, as referenced in prior studies [19,20,22,52], the WEC is designed to
operate at the Dowsing site in the North Sea. The wave conditions selected for analysis are drawn
from the 50-year return period environmental contour plot corresponding to this specific location.
To construct the hybrid surrogate model, the GPR and LSTM machine learning techniques are
implemented. The GPR component of the model maps the 50-year return period waves and PTO
parameters to the corresponding mooring force, following a similar procedure as described in related
works [14, 25]. Section 4 provides a detailed explanation of this process. The LSTM component
complements the GPR model, enhancing the accuracy of predicting the mooring force time series.

In this study, two approaches are employed to train the surrogate model. First, existing data
from Computational Fluid Dynamics (CFD) simulations are used, representing a traditional sta-
tistical learning technique without active learning. Second, the active learning scheme in Bayesian
experimental design is applied to construct the hybrid surrogate model. In the latter approach, the
training samples are not predetermined but are sequentially selected during the active learning
iterations. The samples obtained from previous iterations inform the decision for selecting the most
informative sample to quantify extreme forces. Finally, in both training approaches, the surrogate
model is utilized to reconstruct the statistics of extreme mooring forces. This enables a comprehensive
understanding of the extreme force characteristics in the system.

3.1 Extreme wave representation
As previously mentioned, the waves are carefully chosen from the 50-year environmental contour,
and each wave is characterized by its significant wave height (Hs) and peak wave period (Tp). The
numerical wave realization, typically represented as a 30-minute to 3-hour irregular wave episode,
demands substantial computational resources in the context of CFD. Instead, as detailed in [21], an
alternative approach involving equivalent design-wave methods is typically employed.

In this study, each 50-year wave is recreated as a focused wave group defined using the NewWave
theory [47]. A focused wave is essentially the combination of sinusoidal wave components, all
converging at a predetermined location and time, maximizing the resulting wave’s amplitude
(Figure 4). One significant advantage of the NewWave theory is its ability to quickly identify extreme
wave episodes within a short time frame compared to the potential occurrence of such events
throughout the entire sea state. This makes the focused wave groups exceptionally suitable for the
computationally intensive CFD simulations.

The process of transforming the (Hs, Tp) pair into the focused wave realization unfolds as follows:
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By employing the NewWave theory and considering the JONSWAP spectrum, the maximum focused
wave amplitude and individual wave components amplitude are determined. These components are
designed to converge at a specific preselected location and time, thereby defining the phase of each
component. In conclusion, starting with the (Hs, Tp) pair, a focused wave profile is constructed. This
profile is then simulated in its interaction with the WEC system using CFD, ultimately allowing us
to record the mooring line force.
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Figure 4: "Focused Wave Profile: Wave components focusing at t = 40 s with their amplitudes
determined by NewWave Theory."

3.2 Wave energy converter
Figure 5 (Left) illustrates the schematic representation of the point-absorber wave energy system [27]
investigated in this study. The system comprises two main components: a buoy and a direct-driven
linear generator housed in a capsule on the seabed, referred to as the power take-off (PTO). These
components are connected by a mooring line made of steel wire rope. The translator within the
generator undergoes reciprocal motion, following the heaving motion of the buoy, which induces
a varying magnetic flux in the stationary stator windings. To prevent excessive displacement, the
translator has a limited stroke length that is reached when the buoy experiences large wave heights.
The translator’s motion is damped by internal upper and lower end-stop springs, ensuring that it
does not collide with the top and bottom of the generator hull. During high waves, the end-stop
spring acts as a restoring force and its magnitude depends on the stiffness of the spring, denoted
as Kes. Another crucial parameter in the PTO is the damping coefficient, DP T O, which governs
the motion of the wave energy converter (WEC) and the conversion of wave power. WEC control
strategies aim to maximize wave power extraction by adjusting the PTO damping coefficient in
response to stochastic environmental conditions.

3.3 Experimental Design
The wave energy system operates under extreme sea states that are specifically chosen from the
50-year environmental contour for Dowsing location in the North Sea [52]. The primary objective
of the surrogate model is to accurately predict the force exerted on the mooring line, which is a
critical component of the system. Several factors contribute to the mooring force, including the
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significant wave height (Hs) and peak wave period (Tp) characterizing the wave, the PTO end-stop
spring stiffness (Kes), and damping coefficient (DP T O). Each of these input variables, along with
their corresponding units and ranges, is summarized in Table 1.

Table 1: Input variables for wave energy system surrogate model.

Symbol Description Units Bounds
Hs Significant wave height m [5.0, 7.8]
Tp Peak wave period s [8.3, 14.0]
Kes PTO end-stop spring stiffness kN/m [585, 960]
DP T O PTO damping coefficient kNs/m [48, 85.5]

3.4 Computational Fluid Dynamics
High-fidelity computational fluid dynamics (CFD) simulations are essential to capture relevant
hydrodynamic nonlinearities when simulating the interaction of the WEC with the extreme wave
episodes. The open-source software OpenFOAM is employed in this study.

The incompressible Reynolds Averaged Navier-Stokes (RANS) equations are numerically solved
using the cell centered finite volume method [10]. The turbulence is included using the k − ω SST
turbulence model that utilizes the wall functions for capturing the turbulence effects on the WEC
boundaries. The model uses the overInterDyMFoam solver to iteratively solve the RANS equations
using the PIMPLE algorithm. The Volume of fluid (VoF) method is employed to capture the free
water surface. The overInterDyMFoam solver provides the overset mesh functionality which allows
complex mesh motions and interactions without the penalties associated with deforming meshes [18].
The wave excitation and the external forces define the WEC motion which is calculated through
the library sixDoFRigidBodyMotion. The wave generation and absorption is implemented via the
IHFOAM toolbox. Detailed description of the CFD model can be found in [18,19, 22]. The setup of
the numerical domain has been validated by comparing the WEC motion and loads under extreme
wave conditions with measurements from physical experiments [22].

4 Hybrid Surrogate Model
The first part of this study evaluates the ability of machine learning technology to predict complex
outputs in the form of time series. As illustrated by Figure 5 (Right), the GPR and LSTM methods
are combined for building a hybrid surrogate model for the wave energy system approximating the
relationship between the input vector x = [Hs, Tp, DP T O, Kes] and the corresponding mooring
force y(t). The surrogate model is trained on CFD data – existing for the purposes of a previous
study. Specifically, 73 datasets are totally available, with the 65 of them used for training the model
and the rest kept for its validation.

The CFD simulations produce the mooring force as a time series record. However, as explained
in section 2.2, the GPR method provides the mapping between scalar quantities, therefore, it does
not predict time series directly. For that purpose, the dimension reduction presented in section 2.4 is
employed to express the mooring force as a finite vector of coefficients, qi. The dimensionality of this
vector is defined by the PCA truncation order n, which is an important parameter balancing the
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accurate force reconstruction against computational cost. The effects of varying number of retained
PCA coefficients is discussed in section 4.1. For this work, n = 12.

To summarize, OpenFOAM generates the mooring force time series corresponding to a set of
input variables. The dimension reduction step follows in order to approximate the force time series as
a set of 12 PCA coefficients. In total, 12 GPR surrogate models are trained to provide the mapping
between the input vector x and each coefficient qi. For a particular x, the GPR posterior mean
q̄i = E[qi|x] is estimated for each of the 12 coefficients which are then combined using Equation (21)
and reconstruct the force time series, ȳG(t). This is the first prediction step making use only the
GPR component of the hybrid model.

Next, the LSTM component - which is able to handle directly time series - receives as input
the GPR reconstructed mooring force ȳG(t) and provides as output the corrected force yL(t). The
LSTM model implements further correction providing a better approximation of the mooring force
by capturing the peaks with higher accuracy. Given that this study focuses on the extremes, it is
very important to properly estimate the peak forces. Figure 5 (Right) illustrates the mapping stages
of the hybrid surrogate model as they have been described in this section.

  =  x

Hs
Tp

DPTO
Kes

Hybrid  
Surrogate Model  y(t)

 GPR1

 GPR2

 GPR12

 ̄q1

 ̄q2

 ̄q12

 LSTM ̄yG(t)  yL(t)
 . . .  . . .

Mooring Force

Figure 5: (Left): A schematic depiction of the point-absorber wave energy system [9]. (Right): The
hybrid surrogate model maps the input–output relationship, with the input x representing the sea
state characteristics, and structural variables of the system and the output y(t) is the force in the
mooring line. The model is built using the GPR and LSTM machine learning techniques. Due to
the dimension reduction of the force time series, twelve GPR surrogate models are created–each for
a PCA coefficient, qi(x). The GPR model maps the input, x, and the output, {qi(x)}12

i=1. The GPR
posterior mean, {q̄i(x)}12

i=1, are used for the force reconstruction, ȳG(t), which constitutes the input
for the LSTM model. The latter’s role is to provide a more accurate prediction, yL(t).
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4.1 Number of retained PCA coefficients
The number of most informative PCA coefficients is identified using the ratio:

Cumulative variance =
∑n

i=1 si∑r
j=1 sj

≥ 0.99, (27)

where the r is the number of non-zero eigenvalues of the force matrix and n is the number of retained
PCA modes - see section 2.4. Figure 6 shows the cumulative variance with the number of PCA
modes which starts to converge for n > 10. In this work, n = 12 modes are retained. This step
is important because the number of retained PCA coefficients defines the computational cost by
determing how many GPR models will be trained later.
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Figure 6: Cumulative retained energy of PCA truncation order n, based on the eigenspectrum of
the mooring force dataset. In this work, n = 12 is chosen to retain > 99% of the signal energy.

4.2 LSTM hyper-parameters selection
To create the optimal LSTM architecture, it is necessary to select the values for several hyper-
parameters, i.e., time series resolution, time-window, number of hidden units, batch size, number
of epochs. In this study, a procedure similar to [50] is followed for the optimal hyper-parameter
definition based on two criteria; (1) prediction accuracy and (2) time for training the LSTM model.

The time series resolution is initially defined and this step is followed by the definition of the
time-window length. The predicted time series for several time-window lengths are compared to
the CFD solution using the Mean Average Percentage Error (MAPE) metric, and based on that
metric the time-window length is determined. Next, the number of the hidden-units is defined again
through MAPE evaluation while the hyper-parameter batch size is selected by evaluating the loss
function. The procedure for hyper-parameters selection is further described below:

1. Time resolution: The raw data from the CFD simulations are sampled in 0.01 s time
intervals - following an interpolation procedure (see section 2.4.1). To accelerate the LSTM training
process, it is examined the option to provide coarser time series. However, a critical point is that
LSTM model should be able to capture the extreme forces, which are the instantaneous peaks
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(a) Resolution 0.02 s (b) Resolution 0.04 s

Figure 7: The LSTM hyper-parameter time resolution is evaluated; (a) 0.02 s and (b) 0.04 s. The
LSTM solution (red) is compared to the CFD solution (dashed black). For lower resolution (0.04 s)
the prediction accuracy in the peaks drops - as indicated by the blue circles - leading to the selection
of 0.02 s for the LSTM model training.

in the time series. Therefore, the time resolution is a sensitive parameter and should satisfy that
the instantaneous peak forces are not vanished in the prediction. In this study, two resolutions
are examined, i.e., dt = 0.02 s, 0.04 s. In Figure 7, the LSTM prediction is compared to the CFD
solution for both resolutions. It is observed that the coarser resolution (dt = 0.04 s) underestimates
the peaks while the finer (dt = 0.02 s) provides high accuracy, and thus it is prefered.

2. Time-window: The total training data is divided into shorter sequences which are called
time-windows. Each sub-sequence consists of the number of time-steps that the LSTM model
considers for predicting the next time-step value. In this stage, it is important to characterise the
time-window length, i.e., how many time-steps per sub-sequence, as it affects the training time and
prediction accuracy of the LSTM model. As shown in Figure 8(a), the time-window is selected after
examining the LSTM prediction accuracy for several lengths (i.e., 10, 15, 20, 25 time steps). It is
observed that the MAPE (< 4 %) does not vary significantly with the time-window length. As
previously mentioned, one of the criteria to choose the hyper-parameters is the time for training the
LSTM model. Therefore, the time-window of 20 time steps is selected because the training time is
accelerated while the prediction accuracy is preserved.

3. Hidden units: The number of the hidden units is the size of the hidden nodes in a LSTM
layer and has a great impact on the LSTM prediction accuracy. The hidden units determine the
dimensions of the weight matrices and bias vectors discussed in section 2.3. For example, for an
input vector x with dimensions d×1, and hidden units, h, the weight matrices of the input, W , have
dimensions d × d, the weight matrices of the hidden state, U , have dimensions, h × h, and the bias
vectors have dimension h×1. The influence of the hidden units is studied and the prediction error
under different numbers of hidden units (32, 64, 128, 256) are compared in Figure 8(b). Finally, 64
hidden units are selected for the LSTM model because less weights and bias coefficients need to
be trained–compared to the case with 128 units–and thus the computational cost for training the
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Figure 8: Selecting hyper-parameters for the LSTM model.

LSTM is reduced. In addition, more hidden units could result in overfitting.
4. Batch size: The batch size is a hyperparameter of gradient descent algorithm that defines the

number of training samples the LSTM processes before updating its internal parameters (weights
and biases). A common approach is to take the batch size equal to 32, or 64 or 128 samples. In this
study, the batch size is evaluated through the loss function (see section 2.3.1). Figure 9 shows that
the loss function presents better convergence for batch size equal to 32 and 64 - both for validation
and training samples. However, the LSTM training process is accelerated for bigger batch size,
therefore, size equal to 64 is chosen in the this study.

5. Epochs: The number of epochs is a hyper-parameter that controls the number of complete
passes through the total training dataset. Along with the learning rate, the choice of training epochs
balances between overfitting and underfitting the LSTM network. In this study, the LSTM model is
trained for 1000 epochs.

6. Learning rate: The learning rate is an important hyperparameter that controls how much the
weights and bias are updated during the training, and consequently affects the training time. In this
study the Adam gradient descent optimization algorithm is utilized since it provides computational
efficiency, straightforward implementation, little memory requirements - among other benefits [26].
Adam uses adaptive learning rate for faster convergence and takes the initial value of 0.001.

Table 2: Summary of optimal LSTM hyperparameters from section 4.2.

Original Sampling Rate 0.01s
Time Resolution 0.02s
Time-Window 20 steps
Hidden Units 64
Batch Size 64
Training Epochs 1000
Initial Learning Rate 0.001
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(a) Loss function error in training data
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(b) Loss function error in validation data

Figure 9: Selecting batch size hyper-parameter for the LSTM model based on the loss function mean
absolute error (MAE).

5 Hybrid Surrogate Model via Active Learning
Figure 10 provides a schematic depiction of the active learning strategy presented in section 2.5,
which is adapted for the construction of the hybrid surrogate model.

1. The GPR model is pre-train on a few randomly selected samples D0 = {xi, yi}tinit
i=1 , where

tinit = 5, which are obtained from the real system (ground truth).

2. The GPR model is further trained using the Bayesian experimental design method that employs
the active learning scheme for effective sample selection. During this step, the existing GPR
model evaluates random input samples, {xi}s

i=1, and based on the acquisition function the
next-best input sample x∗ is selected satisfying a specific condition (e.g. identify areas in
the input parameter space where extremes are more probable to occur). The corresponding
value, y∗, is then evaluated through the real system. The new pair {x∗, y∗} is added in the
existing training dataset and the GPR model is retrained. This is a loop that continues for
a number of user-defined iterations, titer = 80. Finally, the GPR model is retrained on the
dataset DG = {xi, yi}titer

i=1 , that consists of the pairs selected via active learning.

3. Now, the LSTM model is trained on the dataset DL = D0 ∪ DG . It is important to note that
the LSTM receives as input the GPR posterior mean force, ȳG,i(t), and output the real system
force yi(t).

4. The resulting hybrid surrogate model is able to predict the force in the mooring line for any
other input vector, x – in orders of magnitude faster than the classical CFD simulations.

5. In addition, the hybrid surrogate is used for the reconstruction of the force statistics (i.e.
PDF).

The selection of appropriate acquisition functions is important for an effective surrogate model,
thus the acquisition functions discussed in section 2.5.1 are evaluated in this study. To quantify the
uncertainty of the developed surrogate model, 15 Bayesian experiments run independently each
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other with each differing in the choice of initial training samples D0 and consequently the dataset
DG .

5.1 Computation of the acquisition function
The active learning strategy aims to reduce the amount of necessary training data to built a reliable
surrogate model. An important step is the sequential sample selection at each iteration of the active
search loop and the acquisition function is the criterion for this selection. At this step, a large
number of input samples is evaluated through the GPR surrogate model, and the sample which
satisfies the acquisition function condition (see section 2.5.1) is selected as the next-best sample.

At each iteration, acquisition samples are generated via Latin Hypercube Sampling (LHS)
from the input domain xLHS = {x1, ...x100}, with nLHS = 100 samples. Next, the xLHS is fed to
the current iteration GPR model in order to calculate the corresponding set of posterior means,
yG(xLHS), and variances, σ2(xLHS). At the same time, each LHS sample xi has a corresponding
probability pX(xi), where pX(·) is the input distribution constructed in section 5.2. Finally, the
probability density of ȳG , pȳG (y) is estimated using the kernel density estimator (KDE) technique,

pȳG (y) = KDE(data = yG(xLHS), weight = px(xLHS)). (28)
Equation 28 is used to compute the weight function w(x) in Equation 25 by evaluating the PDF

pȳG (y) at y = yG(xLHS), and then taking the ratio with pX(xLHS). Finally, the next-best point
x∗ ∈ xLHS is the one that satisfies

x∗ = argmax
x∗∈xLHS

aUS−LW (x). (29)

5.2 Distribution of the input parameters
The nominal distribution, px, is defined for each sample. In this study, the input space is characterised
by a 4-dimensional input vector, x = [Hs, Tp, DP T O, Kes]. As suggested by [15], the significant
wave height, Hs, follows a Weibull distribution,

fHs
(h) = β

ρ

(
h

ρ

)β−1
exp

{
−

(
h

ρ

)β
}

, for h>η (30)

where β is the shape parameter and ρ is the scale parameter. The wave period, Tp, follows a lognormal
distribution conditional to significant wave height, Hs

fTp|Hs
(t|h) = 1√

2πσ(h)t
exp − (ln t − µ(h))2

2σ(h)2 (31)

where parameters µ(h) and σ(h) are given by

µ(h) = a1 + a2ha3 (32)

σ(h)2 = b1 + b2 exp{−b3h} (33)
The values for all the parameters (β, ρ, η, a1, a2, a3, b1, b2, b3) obtained from measurements in North
Sea [15] and summarized in Table 3. Last, the PTO damping, DP T O, and upper end-stop spring
stiffness, Kes, are taken to follow a uniform distribution due to their nature as design parameters.
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Figure 10: 1. Initialization: The GPR surrogate model is pre-trained on a few random samples and
learns a sparse representation of the underlying system. 2. Active learning strategy: (i) The current
GPR model evaluates a big number of Latin Hypercube samples for discovering the regions of the
parameter space that lead to extreme events. (ii) The acquisition function identifies the next-best
sample that reduces the model’s uncertainty (exploration) and provides the best information about
extremes (exploitation). (iii) The next-best sample is evaluated through a process that provides the
real solution. This process can be a physical experiment, a numerical simulation or another model
that the user trusts. (iv) The next-best input sample and the corresponding output are added in
the existing training dataset. (v) The GPR model is retrained on the updated dataset. The steps
(i)-(v) are repeated until either the solution converges or for a user-defined number of iterations
– a limit that depends on the available resources. 3. The LSTM neural network is trained on the
dataset obtained from the active learning loop plus the initial samples. The LSTM and GPR are
coupled into a hybrid surrogate model that is used in the next steps. 4. The hybrid model is able to
provide the accurate prediction of the force times series for any input vector. 5. To quantify the
force statistics, thousands of Monte Carlo samples are evaluated through the surrogate model and
the PDF is constructed on the corresponding outputs.
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Finally, for the simulation designs, the vector x is constraint to live in a four dimensional
hyperbox, with bounds given by Table 1. For the wave parameters Hs and Tp, the hyperbox bounds
are chosen to include most of the probability mass associated with the unbounded distributions
described in this section. For the PTO parameters DP T O and Kes, the hyperbox bounds are chosen
to include ‘reasonable’ engineering values.

Table 3: Parameters of the Weibull and lognormal distributions that describe the sea state charac-
teristics. The values are determined from measurements in the North Sea [15].

Parameters β ρ η a1 a2 a3 b1 b2 b3
1.550 2.908 3.803 1.134 0.892 0.225 0.005 0.120 0.455

5.3 Ground truth model for comparison
In practice, for any input vector, x, the corresponding mooring line force, y(t), can be obtained from
the high-fidelity CFD model (section 3.4). However, the hybrid surrogate model developed in section
4 has been successfully validated to approximate the real system, yet is computationally faster
compared to the classical CFD modeling. Therefore, this surrogate can be viewed as the real system
(ground truth solution) at the active learning process. Specifically, Figure 10 (2.iii) shows that the
algorithm calls the real system to evaluate the next-best sample, x∗, and provide the corresponding
mooring force, y∗. To the purpose of the present study, the choice of the hybrid surrogate model of
section 4 allows for the accurate output evaluation without the punishing computational cost of
repeated CFD simulations.

5.4 Extreme Force Statistics in the Mooring Line
The quantification of extreme statistics of a quantity of interest, i.e., PDF of extreme load on a critical
component, are critical in the design and reliability assessment of nonlinear dynamical systems [32].
For practical applications, the definition of the PDF of a quantity of interest is a challenging process
due to limitations in the classical modeling practices. That is to say, the availability of high-fidelity
numerical models and/or experimental tests to provide the outputs for several inputs is limited due
to cost and resources.

By employing the developed surrogate model, the extreme force statistics can be effectively
reconstructed. In this study, the quantity of interest is the maximum peak force, ymax, (i.e., second
peak in the force time series)

ymax = max
t∈[0,T ]

|yL(t)|. (34)

First, nMC = 105 input samples {xi}nMC
i=1 are drawn with Monte Carlo sampling from the

hyperbox defined in section 5.2. Next, the input samples are pushed into the GPR model which
provides the initial prediction of the mooring force, ȳG(t), which in turn is the input to the LSTM
model that computes the corrected force, yL(t). Finally, the force PDF, ps, is reconstructed via the
KDE based on the maximum mooring force, ymax, for each output yL(t). This KDE construction has
superior statistical convergence compared to a Monte Carlo histogram, especially for the distribution
tails (extreme events).
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5.4.1 Error metric

To evaluate the ability of the active learning algorithm to quantify the extreme force PDF, the real
system PDF (i.e., ground truth), py, is compared with the reconstructed PDF, ps, at each iteration
t of the algorithm. The log-pdf error is reported as the metric to quantify the discrepancy between
the PDFs

e(t) =
∫

| log10 pst
(y) − log10 py(y)|dy (35)

Both PDFs are estimated on 105 samples via Monte Carlo design (see section 5.4). The error metric
includes the logarithms in order to emphasize the comparison of the tails of the PDFs. In this study,
as 15 Bayesian experiments are conducted and the pst expresses the median.

6 Results
6.1 Hybrid Surrogate Model for Time Series Prediction
The performance of the hybrid surrogate model, developed in section 4 and trained on data from
65 CFD simulations, is analyzed in this section. The model aims to predict the mooring force at a
point-absorber WEC operating in 50-year extreme waves.

The GPR component of the hybrid surrogate maps the input vector, x, to the conditional
posterior mean of each PCA coefficient, q̄i

12
i=1. Subsequently, the PCA coefficients are combined using

Eq. (21) to construct the force time series. Figure 11 (Left) illustrates a comparison between the
force predicted by the GPR model and the CFD solution for four validation cases. The qualitative
assessment reveals that the GPR model is capable of approximating the complex force time series;
however, it underestimates the three main peaks. This underestimation can be attributed, in part,
to the finite PCA truncation, which excludes very high frequency components. Additionally, the
constrained size of the dataset further restricts the predictions of the first and third peaks.

In this study, the focus is on extreme events, making it crucial to accurately capture peak forces.
This motivation leads to the inclusion of the LSTM component in the hybrid surrogate model.
The LSTM neural network takes the mooring force time series from the GPR model as input and
provides an improved prediction as output. Figure 11 (Right) presents a qualitative comparison of
the time series predicted by the LSTM, GPR, and CFD models, demonstrating that the LSTM
component enhances the accuracy of the predictions.

For a quantitative assessment of the prediction accuracy in the peak regions, the coefficient of
determination, denoted as R2, is utilized as a goodness-of-fit metric. This metric measures how well
the quantity of interest predicted by the surrogate model compares to the corresponding values
obtained from the CFD solution. The results are presented in Figure 12 in the form of a scatter plot.
The plot illustrates the distribution of the three predicted peak forces.

The GPR model (represented by blue dots) demonstrates a high level of accuracy in predicting
the second peak (R2 = 0.852). However, its performance decreases for the first (R2 = 0.188) and
third peaks (R2 = 0.299). On the other hand, the LSTM model (represented by red dots) significantly
improves the prediction accuracy. The coefficient of determination, R2, increases to 0.822 for the first
peak (from 0.188), 0.934 for the second peak (from 0.852), and 0.703 for the third peak (from 0.299).
This enhancement demonstrates the effectiveness of the LSTM model in improving the accuracy of
the predictions.
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Figure 11: [Left] Comparison of the GPR mooring force (green) with the CFD solution (dashed
black) for four validation cases. [Right] Improved time series prediction by the LSTM model (red),
particularly for the three main peaks.
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Figure 12: Comparison of the three main peaks predicted by the GPR and LSTM models to the CFD
solution, quantified by the coefficient of determination R2. The LSTM model shows a significant
improvement in the R2 value.

26



To assess the predictive performance of the hybrid surrogate model for the entire force time series
(not just the peaks), Figure 13 compares the force spectral density obtained from the GPR and
LSTM machine learning models with the CFD simulations. It is worth noting that the GPR-based
spectral density does not accurately capture certain frequency components, which can be attributed
to the dimensionality reduction of the force using a low-rank vector of PCA coefficients. However,
the LSTM component improves not only the accuracy of the peaks but also the overall prediction of
the entire time series.

For a quantitative comparison of the spectra, the l1 norm is employed as the error metric within
the frequency range [fl, fu] = [0.04, 0.16] Hz, given by

l1 =
∫ fu

fl

|ssurrog(f) − sCF D(f)|df, (36)

where ssurrog and sCF D represent the predicted and CFD force spectral densities, respectively, and
f denotes the frequency. Figure 14 provides a summary of the l1 norm metric for the eight validation
samples. It can be observed that the error l1 is reduced after the LSTM model is implemented,
indicating improved accuracy in the prediction of the force spectral density.

6.1.1 Computational cost

The motivation behind the construction of the hybrid surrogate model is driven by the need to
introduce a computationally inexpensive alternative when the direct simulation of wave-structure
interaction would be computationally prohibitive. In this section, the resources and time required
by CFD simulations and machine learning techniques are compared and discussed.

For a given input vector, x = [Hs, Tp, DP T O, Kes], approximately 3000 CPU hours or 1 calendar
day is demanded by the CFD code to simulate the wave-structure interaction and provide the
corresponding force in the mooring line. The simulations are performed on the Tetralith HPC cluster,
with 128 cores being occupied. In this study, results from 73 CFD simulations are employed for
training and validating the surrogate models.

In contrast, the GPR surrogate model offers the great advantage of being a very inexpensive
tool. The training of the GPR model on 65 datasets is a very quick process that takes just a few
seconds, while the trained model also provides the solution in just a few seconds. This process is
executed on a computer equipped with an Intel Xeon W-2135 CPU, NVIDIA Quadro P1000 GPU,
and 64 GB RAM. The training of the LSTM neural network requires a longer time since the model
is tasked with predicting a time series. Specifically, in this study, the training stage requires 10 hours.
However, once the LSTM model is trained, it provides the output in approximately 1-2 minutes.

In summary, the output prediction for a massive number of input variables is successfully achieved
by the hybrid surrogate model within just a few minutes. In contrast, the CFD simulations would
demand many calendar days, consuming significant computational resources.

6.2 Development of a Surrogate Model via Active Learning
In this section, a hybrid surrogate model is developed (as detailed in Section 5), employing the active
learning scheme within Bayesian experimental design to effectively select the proper training samples
for ensuring the model’s reliability in the estimation of extreme force statistics. At the core of this
procedure lies the acquisition function, which guides the sample selection process. Two acquisition
functions, namely US-LW and US, as outlined in Section 2.5.1, are utilized. For comparison purposes,
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Figure 13: Comparison of the force spectra density obtained from the GPR (green) and LSTM (red)
models, compared to the CFD solution (black), demonstrating better agreement with the LSTM
model.
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Figure 14: Comparison of the predicted force spectra density by the surrogate model and the actual
spectra from CFD solution. Surrogate models include: GPR-based (gray) and hybrid model (black)
which combines GPR and LSTM. The error evaluation is based on the L1 norm metric.

the LHS method – a widely employed technique in experimental design – is also employed for the
selection of training data. The results are compared within this section to provide a comprehensive
evaluation.

Samples selection: Although the input space includes both wave conditions and PTO parameters,
the wave characteristics (Hs, Tp) assume a more prominent role in guiding the algorithm’s search. In
Figure 15, a comparison is presented between the decisions made by the US and US-LW acquisition
functions after 10 and 20 iterations. Both acquisition functions foster exploration of regions within
the input space characterized by high uncertainty. However, the US-LW offers a distinct advantage
in sample selection as it also takes into account the significance of the output concerning the input
(exploitation). Conversely, the US’s primary focus is on uncertainty reduction, neglecting the input
distribution and output values. Consequently, this results in relatively uniform sampling, with the
US exhibiting a preference for selecting points along the boundaries of the input parameter space
– a trend consistently observed in [3]. In contrast, the US-LW opts for samples along a diagonal
band and avoids an excessive emphasis on boundary points. Notably, the US-LW prioritizes ex-
perimental conditions that lead to the generation of substantial waves and significant structural forces.

Solution convergence: To assess the uncertainty of the surrogate model, each acquisition function
undergoes evaluation through 15 separate Bayesian experiments. Each experiment begins by utilizing
a pre-trained GPR model and then proceeds through 20 active learning iterations. At each iteration,
the log-pdf error metric (as detailed in section 5.4.1) gauges the surrogate model’s performance
by comparing the statistics of the reconstructed force PDF with the ground truth PDF. Figure
16 (Left) displays the log-pdf error for both the US and US-LW acquisition functions, presenting
the mean log-pdf error resulting from multiple experiments. Moreover, a comparative assessment is
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carried out, contrasting the Bayesian sequential sampling algorithm with LHS. This comparison
highlights the benefits of employing the US-LW acquisition function within the domain of Bayesian
experimental design. The surrogate model built upon US-LW demonstrates superior accuracy in
predicting mooring force statistics compared to both US and LHS, and it does so with faster
convergence. Finally, an LSTM neural network is trained using the data sampled after 20 iterations
of the active learning algorithm. Combining the GPR model from the 20th iteration with the LSTM
model creates the hybrid surrogate model, which is used for predicting extreme force statistics.
Figure 16 (Right) illustrates that the incorporation of the LSTM component in the surrogate model
significantly reduces the error, resulting in better alignment of the reconstructed PDF with the
Ground Truth PDF. Among all the methods employed for training data sampling, US-LW yields
the lowest error, and the introduction of the LSTM component further reduces the error by 22.7%.
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Figure 16: [Left] Log-pdf error per AS iteration for US-LW, US, and LHS, representing the mean
error from 15 Bayesian experiments. It compares Ground Truth PDF with the PDF reconstructed by
the GPR model at each iteration, with error bands indicating half of the median absolute deviation.
[Right] After the 20th iteration, the hybrid surrogate model is trained and compared to the 20th
iteration GPR model.

6.3 Surrogate Model Applications
6.3.1 Extreme Force Statistics

Main objective of this study is to quantify maximum mooring force statistics using random sets of
input variables. Classical high-fidelity modeling techniques, such as CFD simulations, are impractical
for this task due to their high computational demands. Instead, a surrogate model was developed
through 20 active learning iterations, enabling rapid predictions of mooring forces for thousands of
Monte Carlo input samples.

The extreme mooring force PDF reconstruction follows the procedure outlined in Section 5.4.
Figure 17 [Left] presents the PDFs reconstructed by the 20th iteration GPR model, which was
trained using data sampled through different methods, i.e., US-LW, US, and LHS. For a more precise
comparison, the ground truth PDF is also included. Similarly, Figure 17 [Right] displays the PDF
generated by the hybrid surrogate model, comprising the 20th iteration GPR model and an LSTM
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Figure 17: PDF of the maximum mooring line force estimated from the [Left] GPR model developed
at the 20th Active Learning iteration and [Right] hybrid surrogate model that consists of the GPR
model of the 20th iteration and an LSTM model. The PDF is reconstructed from GPR models
trained on samples selected using US-LW, US and LHS. The PDF is compared to the Ground Truth
PDF (black).

neural network. This combination significantly enhances the quality of the PDF, underscoring the
significance of the hybrid model. Furthermore, Figure 17 illustrates the value of utilizing the US-LW
acquisition function, consistently outperforming alternative methods.

6.3.2 Interpretation of the inferred surrogate model

Figure 18 and Figure 19 present contour plots illustrating the influence of input variables, x = [Hs,
Tp, DP T O, Kes], on the maximum mooring force. As it is difficult to visualize the four-dimensional
input vector, a series of two-dimensional plots are generated, keeping two variables constant at a
time. These contour plots offer insights into the individual impact of each input variable but also
the interactions between them.

In particular, Figure 18 illustrates how variations in wave characteristics impact the maximum
mooring force while holding the PTO parameters constant. These contour plots are useful during
the preliminary design phase of a WEC system at a specific offshore site as they facilitate the
assessment of maximum loads in the mooring system for any given set of PTO parameters. For
instance, at an offshore site characterized by a prominent sea state with a wave period of Tp = 12 s
and a significant wave height of Hs = 5 m, the maximum force in the mooring line is expected to
fall within the range of approximately 200-240 kN, regardless of the combination of PTO values
employed. Conversely, at an offshore location where the dominant sea state features Tp = 14 s and
Hs = 7 m, the maximum force can vary between 480 and 680 kN, depending on the chosen PTO
parameters. Hence, the selection of suitable PTO parameter values holds critical importance.

In the top-row subplots of Figure 18, PTO damping (DP T O) remains constant while spring
stiffness (Kes) varies. Similarly in the bottom-row subplots. Notably, it is observed that the mooring
force undergoes relatively minor changes in this scenario. This behavior can be attributed to the
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fact that the spring is not fully compressed in most sea states, resulting in minimal additional force
being exerted on the mooring line. Conversely, the first-column figures maintain a consistent spring
stiffness value (Kes) while altering the damping (DP T O), and the same applies to the second-column
figures. In this situation, the mooring force exhibits higher values with increased damping. This
phenomenon can be explained by the fact that higher PTO damping applies a greater force on the
buoy through the mooring line, dampening the buoy’s motion during interactions with incoming
waves.

Figure 19 provides insights into how adjustments in the PTO parameters (Kes, DP T O) influence
the extreme mooring force while keeping the sea state variables (Hs, Tp) constant. These contour
plots offer valuable guidance for the development of a control algorithm aimed at adapting the
damping of the PTO system to specific sea states, as discussed in [41]. In the top-row subplots,
Hs remains consistent while Tp increases, and similarly in the bottom-row subplots. As the wave
period Tp increases, the wave length expands, leading to a higher wave celerity and consequently an
increased potential for wave energy. This results in higher loads on the structure. The first-column
subplots maintain the same Tp value but increase Hs, and the same holds for the second-column
subplots. In this scenario, the wave becomes steeper, providing an explanation for the occurrence of
higher forces, as previously observed in [19] and [18].

7 Conclusions
When the direct modeling of a real-world offshore system becomes computationally prohibitive, the
development of a reliable surrogate model becomes essential. Yet, in practical applications where
each sample evaluation demands valuable time and resources, the careful selection of samples for
the proper model development becomes crucial. In this study, an active learning scheme in Bayesian
experimental design and advanced machine learning techniques are leveraged in a framework that
effectively creates a surrogate model. The great advantage of this framework is that it circumvents
the need for massive training data while reduces the prediction uncertainty. Specifically, the active
learning scheme effectively guides the selection of training samples, uncovering regions within the
parameter space that yield the most pertinent information about extremes and higher uncertainty.
The resulting surrogate model is then deployed to quantify the statistics of the quantity of interest.

While the effectiveness of the developed framework has been previously demonstrated in [4, 38],
its application to realistic scenarios, such as a wave energy system subjected to 50-year waves, is
clearly demonstrated. In offshore structures, the extreme loads on critical components, such as the
mooring system, are a natural quantity of interest. In this study, the hybrid surrogate model for a
point-absorber WEC is constructed combining two machine learning methods, specifically GPR and
LSTM neural networks. This surrogate exhibits the capability to predict the complex mooring force
with remarkable success, validated against CFD simulations, and does so at orders of magnitude
faster compared to CFD. Subsequently, the surrogate proves invaluable in quantifying extreme
mooring force statistics, evaluating thousands of Monte Carlo samples, and effectively reconstructing
the PDF, with particular emphasis on accurately capturing the tails. Furthermore, the surrogate
model can be used to offer insights into the system’s behavior, i.e., how the input variables influence
the quantity of interest.

The accurate quantification of extreme loads not only has the potential to reduce costs by refining
conservative safety factors but also ensures that systems are designed to withstand these extreme
conditions, preserving reliability. Additionally, reliable surrogate models can expedite the design
process and optimize the structural design of emerging wave energy technologies.
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Figure 18: Visualization of surrogate model projections: Contour plots depicting the maximum
mooring force. Colorbar represents values in [kN]. Each subplot illustrates force variations with wave
characteristics (Hs, Tp), keeping other input parameters constant (DP T O, Kes).
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Figure 19: Visualization of surrogate model projections: Contour plots depicting the maximum
mooring force. Colorbar represents values in [kN]. Each subplot illustrates force variations with
PTO parameters (DP T O, Kes), keeping wave characteristics (Hs, Tp) constant.
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As a future direction, it is suggested to increase the dimensional input space by considering
more design parameters. This step would require machine learning methods capable of accurately
mapping a multi-functional input space to multi-functional outputs while ensuring accurate prediction
in unseen data. Deep neural operators, such as DeepONets [31] and [37], are recommended for
this purpose. Furthermore, the surrogate model can be further used for the development of an
optimization procedure, which can be integrated into the design stage. Additionally, to address
the practical difficulty of obtaining high-fidelity training data, a multi-fidelity surrogate model is
suggested. This model leverages the advantages of low- and high-fidelity modeling tools, such as
recursive co-kriging [36]. The low-fidelity part of the surrogate provides the solution trend, while the
high-fidelity part learns the residuals (the difference between the low- and high-fidelity solution)
and appropriately corrects the predictions. The multi-fidelity surrogate model will ensure that less
high-fidelity data is necessary for training purposes.

Acknowledgments
The research in this paper was supported by the Swedish Centre of Natural Hazards and Disaster
Science (CNDS), the Onassis Foundation (Scholarship ID: FZP 021-1/2019-2020, the Anna-Maria
Lundins Scholarship (AMh2021-0023) and Liljewalch Scholarship. TPS and SG have been supported
through the ONR grant N00014-21-1-2357.

The CFD simulations were performed on resources provided by the Swedish National Infrastructure
for Comuting (SNIC) at the HPC cluster Tetralith at the National Supercomputer Centre, at
Linköping University.

References
[1] Enrico Anderlini. Control of wave energy converters using machine learning strategies. PhD

thesis, University of Edinburgh, 2017.

[2] Aurélien Babarit, Jorgen Hals, Made Jaya Muliawan, Adi Kurniawan, Torgeir Moan, and Jorgen
Krokstad. Numerical benchmarking study of a selection of wave energy converters. Renewable
energy, 41:44–63, 2012.

[3] Antoine Blanchard and Themistoklis Sapsis. Bayesian optimization with output-weighted
optimal sampling. Journal of Computational Physics, 425:109901, 2021.

[4] Antoine Blanchard and Themistoklis Sapsis. Output-weighted optimal sampling for Bayesian
experimental design and uncertainty quantification. SIAM/ASA Journal on Uncertainty
Quantification, 9(2):564–592, 2021.

[5] Bret Bosma, Zhe Zhang, Ted KA Brekken, H Tuba Özkan-Haller, Cameron McNatt, and
Solomon C Yim. Wave energy converter modeling in the frequency domain: A design guide.
In 2012 IEEE Energy Conversion Congress and Exposition (ECCE), pages 2099–2106. IEEE,
2012.

[6] Alain Clément, Pat McCullen, António Falcão, Antonio Fiorentino, Fred Gardner, Karin
Hammarlund, George Lemonis, Tony Lewis, Kim Nielsen, Simona Petroncini, et al. Wave

36



energy in Europe: current status and perspectives. Renewable and sustainable energy reviews,
6(5):405–431, 2002.

[7] Richard Courant, Kurt Friedrichs, and Hans Lewy. On the partial difference equations of
mathematical physics. IBM journal of Research and Development, 11(2):215–234, 1967.

[8] Balazs Czech and Pavol Bauer. Wave energy converter concepts: Design challenges and
classification. IEEE Industrial Electronics Magazine, 6(2):4–16, 2012.

[9] Manhar R Dhanak and Nikolaos I Xiros. Springer handbook of ocean engineering. Springer,
2016.

[10] Wenyuan Fan and Henryk Anglart. On the closure requirement for vof simulations with rans
modeling. arXiv preprint arXiv:1911.09727, 2019.

[11] Jan J. Gerbrands. On the relationships between SVD, KLT and PCA. Pattern Recognition,
14(1):375–381, 1981. 1980 Conference on Pattern Recognition.

[12] Bingyong Guo and John V Ringwood. A review of wave energy technology from a research and
commercial perspective. IET Renewable Power Generation, 15(14):3065–3090, 2021.

[13] Stephen Guth, Bianca Champenois, and Themistoklis P Sapsis. Application of gaussian process
multi-fidelity optimal sampling to ship structural modeling. In 34th Symposium on Naval
Hydrodynamics Proceedings Washington DC 2022, 2022.

[14] Stephen Guth and Themistoklis P. Sapsis. Wave episode based gaussian process regression for
extreme event statistics in ship dynamics: Between the Scylla of Karhunen–Loève convergence
and the Charybdis of transient features. Ocean Engineering, 266:112633, 2022.

[15] Sverre Haver and Steven R Winterstein. Environmental contour lines: A method for estimating
long term extremes by a short term analysis. In SNAME Maritime Convention. OnePetro,
2008.

[16] International Renewable Energy Agency (IRENA), Abu Dhabi. Innovation outlook: Ocean
energy technologies, 2020.

[17] Eirini Katsidoniatski, Yi-Hsiang Yu, and Malin Goteman. Midfidelity model verification for a
point-absorbing wave energy converter with linear power takeoff. Technical report, National
Renewable Energy Lab.(NREL), Golden, CO (United States), 2021.

[18] Eirini Katsidoniotaki and Malin Göteman. Numerical modeling of extreme wave interaction
with point-absorber using openfoam. Ocean Engineering, 245:110268, 2022.

[19] Eirini Katsidoniotaki, Erik Nilsson, Anna Rutgersson, Jens Engström, and Malin Göteman.
Response of point-absorbing wave energy conversion system in 50-years return period extreme
focused waves. Journal of Marine Science and Engineering, 9(3):345, 2021.

[20] Eirini Katsidoniotaki, Foivos Psarommatis, and Malin Göteman. Digital twin for the prediction
of extreme loads on a wave energy conversion system. Energies, 15(15):5464, 2022.

37



[21] Eirini Katsidoniotaki, Edward Ransley, Scott Brown, Johannes Palm, Jens Engström, and Malin
Göteman. Loads on a point-absorber wave energy converter in regular and focused extreme wave
events. In International Conference on Offshore Mechanics and Arctic Engineering, volume
84416, page V009T09A022. American Society of Mechanical Engineers, 2020.

[22] Eirini Katsidoniotaki, Zahra Shahroozi, Claes Eskilsson, Johannes Palm, Jens Engström, and
Malin Göteman. Validation of a CFD model for wave energy system dynamics in extreme
waves. Under revision in Ocean Engineering, 2022.

[23] Maria Katsidoniotaki. Uncertainty quantification techniques with diverse applications to stochas-
tic dynamics of structural and nanomechanical systems and to modeling of cerebral autoregulation.
PhD thesis, Columbia University, 2022.

[24] Maria I Katsidoniotaki, Apostolos F Psaros, and Ioannis A Kougioumtzoglou. Uncertainty
quantification of nonlinear system stochastic response estimates based on the Wiener path
integral technique: A Bayesian compressive sampling treatment. Probabilistic Engineering
Mechanics, 67:103193, 2022.

[25] Stephen Guth Eirini Katsidoniotaki and Themistoklis P. Sapsis. Statistical modeling of fully
nonlinear hydrodynamic loads on offshore wind turbine foundations using wave episodes and
targeted CFD simulations through active sampling. Submitted, 2023.

[26] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[27] Mats Leijon, Cecilia Boström, Oskar Danielsson, Stefan Gustafsson, Kalle Haikonen, Olivia
Langhamer, Erland Strömstedt, Magnus Stålberg, Jan Sundberg, Olle Svensson, et al. Wave
energy from the north sea: Experiences from the lysekil research site. Surveys in geophysics,
29(3):221–240, 2008.

[28] Liang Li, Zhiming Yuan, and Yan Gao. Maximization of energy absorption for a wave energy
converter using the deep machine learning. Energy, 165:340–349, 2018.

[29] Xuan Li and Wei Zhang. Long-term fatigue damage assessment for a floating offshore wind
turbine under realistic environmental conditions. Renewable Energy, 159:570–584, 2020.

[30] Yuqi Liu, Xiaocheng Liu, Jinkang Guo, Ranran Lou, and Zhihan Lv. Digital twins of wave
energy generation based on artificial intelligence. In 2022 IEEE Conference on Virtual Reality
and 3D User Interfaces Abstracts and Workshops (VRW), pages 718–719. IEEE, 2022.

[31] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218–229, 2021.

[32] Mustafa A Mohamad and Themistoklis P Sapsis. Sequential sampling strategy for extreme event
statistics in nonlinear dynamical systems. Proceedings of the National Academy of Sciences,
115(44):11138–11143, 2018.

[33] Guilherme Moura Paredes, Claes Eskilsson, and Allan P. Engsig-Karup. Uncertainty quantifica-
tion in mooring cable dynamics using polynomial chaos expansions. Journal of Marine Science
and Engineering, 8(3):162, 2020.

38



[34] Seyed Milad Mousavi, Majid Ghasemi, Mahsa Dehghan Manshadi, and Amir Mosavi. Deep
learning for wave energy converter modeling using long short-term memory. Mathematics,
9(8):871, 2021.

[35] Dezhi Ning and Boyin Ding. Modelling and Optimization of Wave Energy Converters. CRC
Press, 2022.

[36] P. Perdikaris, D. Venturi, J. O. Royset, and G. E. Karniadakis. Multi-fidelity modelling via
recursive co-kriging and gaussian–markov random fields. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 471(2179):20150018, 2015.

[37] Ethan Pickering, Stephen Guth, George Em Karniadakis, and Themistoklis Sapsis. Discovering
and forecasting extreme events via active learning in neural operators. Nature Computational
Science, 2:823–833, 2012.

[38] Ethan Pickering, Stephen Guth, George Em Karniadakis, and Themistoklis P Sapsis. Discovering
and forecasting extreme events via active learning in neural operators. Nature Computational
Science, 2(12):823–833, 2022.

[39] Román Quevedo-Reina, Guillermo M Álamo, Luis A Padrón, and Juan J Aznárez. Surrogate
model based on ann for the evaluation of the fundamental frequency of offshore wind turbines
supported on jackets. Computers & Structures, 274:106917, 2023.

[40] Edward Jack Ransley. Survivability of wave energy converter and mooring coupled system using
CFD. PhD thesis, Plymouth University, 2015.

[41] Claudio A Rodríguez, Paulo Rosa-Santos, and Francisco Taveira-Pinto. Assessment of damping
coefficients of power take-off systems of wave energy converters: A hybrid approach. Energy,
169:1022–1038, 2019.

[42] Themistoklis P. Sapsis. Output-weighted optimal sampling for Bayesian regression and rare
event statistics using few samples. Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 476(2234):20190834, 2020.

[43] Themistoklis P Sapsis. Statistics of extreme events in fluid flows and waves. 2021.

[44] Qinshuo Shen, Faridaddin Vahdatikhaki, Hans Voordijk, Jeffrey van der Gucht, and Lex
van der Meer. Metamodel-based generative design of wind turbine foundations. Automation in
construction, 138:104233, 2022.

[45] Masanobu Shinozuka. Basic analysis of structural safety. Journal of Structural Engineering,
109(3):721–740, 1983.

[46] András Sobester, Alexander Forrester, and Andy Keane. Engineering design via surrogate
modelling: a practical guide. John Wiley & Sons, 2008.

[47] Peter S Tromans, Ali R Anaturk, and Paul Hagemeijer. A new model for the kinematics of
large ocean waves-application as a design wave. In The first international offshore and polar
engineering conference. OnePetro, 1991.

[48] Jennifer van Rij, Yi-Hsiang Yu, Yi Guo, and Ryan G Coe. A wave energy converter design
load case study. Journal of Marine Science and Engineering, 7(8):250, 2019.

39



[49] Michael E Wall, Andreas Rechtsteiner, and Luis M Rocha. Singular value decomposition and
principal component analysis. In A practical approach to microarray data analysis, pages 91–109.
Springer, 2003.

[50] Ziming Wang, Dongsheng Qiao, Jun Yan, Guoqiang Tang, Binbin Li, and Dezhi Ning. A new
approach to predict dynamic mooring tension using lstm neural network based on responses of
floating structure. Ocean Engineering, 249:110905, 2022.

[51] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA, 2006.

[52] Linus Wrang, Eirini Katsidoniotaki, Erik Nilsson, Anna Rutgersson, Jesper Rydén, and Malin
Göteman. Comparative analysis of environmental contour approaches to estimating extreme
waves for offshore installations for the baltic sea and the north sea. Journal of Marine Science
and Engineering, 9(1):96, 2021.

[53] Yi-Hsiang Yu and Ye Li. Reynolds-Averaged Navier–Stokes simulation of the heave performance
of a two-body floating-point absorber wave energy system. Computers & Fluids, 73:104–114,
2013.

[54] Yi-Hsiang Yu, Ye Li, Kathleen Hallett, and Chad Hotimsky. Design and analysis for a floating
oscillating surge wave energy converter. In International Conference on Offshore Mechanics
and Arctic Engineering, volume 45547, page V09BT09A048. American Society of Mechanical
Engineers, 2014.

40


	Introduction
	Background on Machine Learning Methods
	Surrogate Modeling
	Gaussian Process Regression
	Covariance function
	Hyperparameter optimization

	Long-Short Term Memory Neural Networks
	Loss function

	Dimension Reduction
	Principal component analysis

	Active Learning
	Acquisition functions


	Wave Energy System in Extreme Sea States
	Extreme wave representation
	Wave energy converter
	Experimental Design
	Computational Fluid Dynamics

	Hybrid Surrogate Model
	Number of retained PCA coefficients
	LSTM hyper-parameters selection

	Hybrid Surrogate Model via Active Learning
	Computation of the acquisition function
	Distribution of the input parameters
	Ground truth model for comparison
	Extreme Force Statistics in the Mooring Line
	Error metric


	Results
	Hybrid Surrogate Model for Time Series Prediction
	Computational cost

	Development of a Surrogate Model via Active Learning
	Surrogate Model Applications
	Extreme Force Statistics
	Interpretation of the inferred surrogate model


	Conclusions

