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A B S T R A C T   

The development and application of the Envelope Peak-over-Threshold (EPOT) method is summarized for the 
roll motion of a ship in irregular waves. The method is based on the conventional Peak-over-Threshold (POT) 
method, but uses an envelope of the peaks for declustering the data. As suggested by a reduced-order model, a 
power-law tail should be applicable for the peaks of roll motions, which allows the introduction of physical 
considerations into the statistical model. A data-driven Generalized Pareto distribution (GPD) is applied to study 
the behavior of the shape parameter on large-volume samples in order to confirm the theoretical prediction of the 
tail structure. The physics-informed statistical model approximates data above a suitable threshold with a Pareto 
distribution, while the threshold is determined with a prediction error criterion. An example is included, where 
extrapolations with GPD are compared to the physics-informed model.   

1. Introduction 

The probability of the occurrence of a large roll angle in irregular 
seas is a useful characterization of the dynamic stability of a ship. The 
calculation of this probability, however, is far from trivial. The linear 
roll restoring, implicit in frequency domain tools, makes them unsuit-
able for the task, so time-domain simulations are required. An analysis 
using engineering-level tools like the Large Amplitude Motions Program 
(LAMP) (Shin et al., 2003) and TEMPEST (Belknap and Reed, 2019) 
typically generates, at best, tens of hours of simulation time history for 
each combination of loading, operational and sea conditions. Large roll 
angles are expected to be rare, far too rare to be estimated through direct 
counting with such tools. In order to estimate the probability of an event 
beyond the duration of practical simulations, an extrapolation method is 
required. 

The objective of statistical extrapolation is, therefore, to characterize 
a likelihood of the exceedance of a large roll angle ϕ∗ without neces-
sarily observing such large angles. The angle ϕ∗ is further referred to as a 
“target” of extrapolation. The value of ϕ∗ may depend on specific risk or 
criteria being evaluated. The interim guidance for the second generation 
IMO intact stability criteria uses exceedance of 40◦ as a failure event for 

direct stability assessment, see paragraph 3.2.1.1 in MSC.1/Circ.1627 
(IMO, 2020). 

The most natural way to perform such an extrapolation is to 
approximate the distribution of roll motions. Belenky et al. (2023) 
presents a review of the state of the art and historical development of 
approximates of the distribution of roll motion. To characterize a large 
roll angle, the approximation of distribution of roll motions above a 
certain value, i.e. a tail of that distribution, may be sufficient. To 
formulate the problem, recall the definition of cumulative distribution 
function (CDF) of a random variable, say, a peak or instantaneous value 
of roll motions in irregular waves. It is defined as a probability that a 
random variable X takes a value less or equal to x, and can be expressed 
in the more commonly used probability density function (PDF), which is 
a derivative of the CDF: 

CDF(x) = P(X ≤ x) =
∫ x

0
PDF(z)dz. (1) 

The tail of a distribution relates to the exceedance of a certain 
“threshold” value u, which is an event complimentary to the one, 
described in (1): 
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P(X > u) = 1 − CDF(u) =
∫ ∞

u
PDF(z)dz. (2) 

The approximation of a tail, as shown in Fig. 1, may be a simpler 
problem than the approximation of the entire distribution. Once the tail 
of the distribution is approximated such that it can be evaluated at the 
target value, the extrapolation problems is solved. 

The threshold value u is a beginning of the tail of distribution. For the 
tail to be fitted from data, this threshold must be within the available 
data. The probability of exceedance of the threshold is estimated as: 

P̂(ϕ > u) =
m
n
, (3)  

where m is the number of observed roll angles above the threshold and n 
is the total number of data points available. A diacritical sign “hat” ˆ

above a letter means that the value is estimated from the data and has 
statistical uncertainty caused by the finite volume of the sample. 

In principle, any function can be used to approximate the tail of a 
distribution, if a normalization condition is satisfied. When fitting a tail, 
rather than a complete distribution, to available data, one needs to 
ensure the normalization condition is still satisfied and the area under 
the PDF equals unity. 

The estimate of the probability of exceedance of the target value is 
expressed as: 

P̂(ϕ > ϕ∗) =
1

Ntl
P̂(ϕ > u)

∫ ∞

φ∗

ftl(ϕ)dϕ, (4)  

where Ntl is a normalizing coefficient for the approximated tail: 

Ntl =

∫ ∞

u
ftl(ϕ)dϕ. (5)  

If a theoretical PDF is used to approximate the tail and it supports the 
range [u;∞), Ntl = 1. Then, 

P̂(ϕ > ϕ∗) = P̂(ϕ > u)
∫ ∞

ϕ∗

PDFtl(ϕ)dϕ = P̂(ϕ > u)(1 − CDFtl(ϕ∗) ). (6) 

If the characterization of the likelihood of a large angle needs to 
account for the time of exposure, the objective of the extrapolation is the 
estimation of a rate of exceedance of the target. Direct stability assess-
ment within the second generation IMO intact stability criteria does 
include exposure time considerations and uses an estimate of the rate of 
failures (exceedances of 40◦ on either side) to judge the dynamic sta-
bility of a ship. 

When a probability distribution with support [u;∞) is used to 
approximate a tail, the extrapolated estimate of rate is expressed as: 

r̂ϕ∗ = r̂u

∫ ∞

ϕ∗

PDFtl(ϕ)dϕ = r̂u(1 − CDFtl(ϕ∗) ). (7)  

where ̂ru is an estimate of the crossing of the threshold u. Essentially the 
term (1 − CDFtl(ϕ∗) ) shows how many of the exceedances of the 
threshold u will end up exceeding the target ϕ∗ as well. The rate of 

exceedances of the threshold r̂u can be estimated as 

r̂u =
P̂(ϕ > u)

T
, (8)  

where T is the time of exposure, i.e. total time of available data. There is 
more than one way to estimate a rate of exceedance from available data; 
these techniques are sometimes referred as “direct counting”. More in-
formation is available from Wandji et al. (2024). 

Generally, the approximation of the tail can be completely data 
driven, as the distribution of the largest value in a sample of independent 
data points tends towards a generalized extreme value distribution 
(GEV) and does not depend on the actual distribution of the variable (or 
underlying distribution). Three particular cases of the GEV are: Gumbel, 
Fréchet and Weibull distributions. This is the essence of the first extreme 
value theorem, which is also known as the Fisher-Tippet-Gnedenko 
theorem. The second extreme value theorem, also known as the 
Pickands-Balkema-de Haan theorem, states that a distribution of inde-
pendent data over a large-enough threshold u can be approximated with 
Generalized Pareto distribution (GPD), e.g. see Coles (2001): 

PDFGPD(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
σ exp

(
−

x − u
σ

)
if ξ = 0

1
σ

(
1 + ξ

x − u
σ

)− (1+1/ξ)
if ξ ∕= 0, ξ

x − u
σ > − 1

0 otherwise

(9)  

where ξ is the shape parameter and σ is the scale parameter. 
From equation (9), a distribution with a negative shape parameter 

has a right bound at x = u − σ/ξ. Such a tail is referred to as “light”. In 
the case of a positive shape parameter, the tail is infinite and is referred 
to as “heavy”. For ξ = 0, the tail is also infinite but always below a heavy 
tail. The ξ = 0 case serves as a border between the heavy and light tails 
and is referred to as “exponential”. Normal and Rayleigh distributions 
have exponential tails. 

GPD was formulated for the approximation of tails by Pickands 
(1975), and is the principal tool in the Peak-over-Threshold (POT) 
method. To fit the GPD, several candidate thresholds are selected and 
the shape and scale parameters are estimated from the data above each 
threshold. Some convergence criteria are applied to select the “large--
enough” threshold from the candidates. Data points for the POT method 
application have to be independent, as equation (9) is formulated for 
independent data. 

The first attempt to use the POT approach for the peaks of roll motion 
utilized a Weibull distribution rather than GPD (Campbell and Belenky, 
2010, 2010a). An envelope was used to ensure the independence of the 
data, giving a name to the technique – Envelope Peak over Threshold 
(EPOT). The concept of a threshold was interpreted from a physical 
standpoint; as a way to separate the domain where the influence of 
nonlinearity is significant. This led to the formulation of the “principle of 
separation” (e.g. Belenky et al., 2012). The complex problem of the 
extrapolation of ship motions is separated in two simpler problems: 
non-rare and rare. The non-rare problem is focused on observable 
quantities and can be handled with quasi-linear methods as its domain is 
characterized by weak nonlinearity. The rare problem is relevant to the 
strongly nonlinear response. Performing the extrapolation on only the 
large-amplitude response emphasizes the nonlinear effect. A similar 
approach can be found in the probabilistic decomposition-synthesis 
method (Mohamad et al., 2016). 

The choice of the Weibull distribution for the rare problem follows its 
traditional application to the estimation of lifetime wave loads. The 
mathematical justification for the application of Weibull for both loads 
and motions is unclear. While the Weibull distribution is a particular 
case of GEV, it describes a left tail (i.e. minima). Originally, Weibull was 
applied to the statistics of the size of coal particles (Rosin and Rammler, 
1933). 

Fig. 1. Approximation of the tail of a distribution and statistical extrapolation.  
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The application of GPD for approximating the distribution tail for 
peaks of roll motions, including different aspects of estimating param-
eters, selecting thresholds and constructing a confidence interval, were 
described by the authors in Campbell et al. (2014, 2015, 2016). A 
methodology for the statistical validation of extrapolation methods was 
developed (Smith, 2019) and has been pursued using large roll motion 
data sets generated with a fast qualitatively-correct simulation tool 
(Weems and Wundrow, 2013; Weems and Belenky, 2015, 2023). 

While the application of GPD has a robust mathematical background, 
its practical application can be challenging. The estimation of the shape 
parameter from a finite volume of data is a statistical procedure and its 
result is subject to statistical uncertainty, i.e. an estimate of the shape 
parameter is random number. A natural variability in the data may lead 
to a significantly negative estimate, which will cause the extrapolation 
to fail, if the extrapolation target is above the right bound. This and 
other challenges of practical GPD applications are described by Pipiras 
(2020) as well as Anastopoulos and Spyrou (2023). 

These challenges may be overcome by introducing physical proper-
ties of the problem into the statistical model. Belenky et al. (2019) 
studied a reduced-order model of roll with piecewise linear restoring, for 
which an analytical solution of the distribution of peaks can be found. 
That distribution had a heavy tail, a result that can be applied in the 
statistical model to make the extrapolation more robust. Such 
physics-informed statistical models are the principal focus of this paper. 
The GPD tail approximation is also considered – for the study of 
behavior of the shape parameter and comparison with the 
physics-informed statistical model. This paper extends previous publi-
cations focusing on the method itself (Belenky et al., 2018; Weems et al., 
2019), while the statistical validation of the method is covered by 
Campbell et al. (2023). The paper has the following structure.  

• Description of the input data for EPOT  
• Brief review of GPD fit 
• Review of the reduced-order model for roll motions and the argu-

ment why the tail of distribution is expected to be heavy  
• Observation and analysis of actual behavior of these tails for 

different wave heading angles  
• Description of the algorithm of fitting heavy tail and comparison of 

results of the GPD and heavy tail extrapolation. 

2. Data for EPOT extrapolation 

The EPOT method was originally intended for the extrapolation of 
data generated by numerical simulations. The data for this paper have 
been taken from the validation data set described in Campbell et al. 
(2023), which was generated with the fast simulation tool “SimpleCode” 
(Weems and Wundrow, 2013; Weems and Belenky, 2015, 2023). Sim-
pleCode incorporates a volume-based evaluation of the body-nonlinear 

hydrostatic and incident wave (Froude-Krylov) forces coupled with or-
dinary differential equation (ODE) type models for added mass, damp-
ing and other hydrodynamic forces. 

The simulations were completed for the Office of Naval Research 
(ONR) Topsides Series tumblehome configuration (Bishop et al., 2005) 
with three degrees of freedom (3-DOF): heave, roll and pitch. The hull 
and the calm water roll restoring (GZ) curve as well as variation are 
depicted in Fig. 2. The loading condition had a draft 5.5 m and zero trim 
(even keel), while the GM value was 2.2 m. Long-crested irregular waves 
were represented by 240 wave components generated from a Bretsch-
neider (1959) spectrum with a significant wave height of 9 m and modal 
period of 15 s, which corresponds to a high Sea State 7 or low Sea State 
8. Forward speed was 6 knots in stern quartering seas with a heading of 
45◦ (other headings were also used for the study of the shape 
parameter). 

The data for extrapolation consisted of a series of 30-min records, 
with pseudo-random phases to produce independent realization of the 
seaway. Data variability is illustrated with three data sets, each con-
taining 50 records. 

Much of extreme value theory and the GPD (equation (9)), in 
particular, are applicable to independent data. Roll motions of the 
present configuration retain a self-dependence for about 1 min, as 
illustrated by the autocorrelation plot in Fig. 3a. This decorrelation time 
is estimated when the envelope of the estimate of autocorrelation 
function crosses the accepted level of significance, see Fig. 3a. With a 
typical zero-crossing roll period of about 10 s, each peak will be 
dependent on 12 or so adjacent peaks (positive and negative). To use this 
data for the approximation of the distribution tail with extreme value 
theory, the self-dependency in the data needs to be removed. This 
removal of self-dependency is called “declustering” and is done here 
with an envelope, as illustrated in Fig. 3b. 

The envelope is constructed from the absolute values of roll peaks 
between zero-crossings and is averaged over the course of a record. The 
largest envelope value between two mean-level crossings is then 
selected for further processing. As can be seen from the example in 
Fig. 3b, the interval between such mean-crossing peaks is a bit more than 
a minute (the first mean-crossing peak is about 80 s, while the second 
one is at 140 s in Fig. 3b), which is roughly the decorrelation time. This 
declustering technique does not work well for parametric roll, as the roll 
motions have a long decorrelation time (up to 10 min) when parametric 
resonance is present (Kim et al., 2014). To perform declustering for 
parametric roll data, the decorrelation time has to be estimated and 
applied directly. Declustering with the envelope provided 1470 inde-
pendent data points (roll peaks) for the data set 1, while the sample 
volume was 1469 and 1446 points for the data sets 2 and 3, respectively. 

Fig. 2. Lines and GZ Curves in Calm Water and Wave of ONR Tumblehome Topside Configuration (Bishop et al., 2005).  
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3. Fitting the GPD 

The GPD fitting procedure applied in this paper generally follows 
Campbell et al. (2016), with some small updates derived from a similar 
application for the capsizing likelihood metric in the split-time method 
(Belenky et al., 2023). The target value for extrapolation was set to a roll 
angle of 40◦ (an angle of stability failure in MSC.1/Circ.1627 (IMO, 
2020)). The fitting involved the following calculations:  

• The data were sorted in descending order and a set of candidate 
thresholds was selected to provide 50 data points for the highest 
threshold. The lowest threshold was set to have 90 % of the data 
points above it. Totally, 64 candidate thresholds were selected 
ranging from 6.9 to 16.1 deg.  

• Mean values and variances of the data above each threshold were 
estimated. The initial guesses for the shape and scale parameters 
were computed with the formulae for mean value and variance of 
GPD. These initial guess values were used for the minimization of the 
negative log likelihood function reduced to one variable (which is a 
ratio between shape and scale parameters). The actual estimates 
were recovered from that minimum.  

• A covariance matrix for the scale and shape parameters was 
computed and a confidence interval was constructed for the esti-
mates of shape and modified scale parameter σ̂m = σ̂ − ξ̂u. Confi-
dence probability was set to Pβ = 0.95.  

• Four methods for the threshold selections were applied. The first 
method was based on the stabilization of the shape parameter. A 
dashed line extended from a shape parameter estimate at a candidate 

threshold crosses all the confidence intervals of the estimate above in 
Fig. 4a for data set 1. Fig. 5a and Fig. 6a show stabilization of the 
shape parameters for data sets 2 and 3, respectively. The second 
method applies the same principle to the estimate of the modified 
scale parameter in Fig. 4b. Application of the second method for data 
sets 2 and 3 is illustrated in Fig. 5b and Fig. 6b. The third and fourth 
methods minimize the difference between the GPD and observed 
distribution as expressed as a cumulative distribution function 
(CDF). The difference is defined in terms of the distribution modes 
above the threshold for the third method (Fig. 4c, Fig. 5c, and Fig. 6c) 
or as a standard deviation for the fourth method (Fig. 4d, Fig. 5d, and 
Fig. 6d). The selected threshold is the largest of the four. These 
methods of threshold selection produce a minimum value where 
extreme properties may be applicable. If four different methods 
provide four different values, the largest among them, ensures the 
applicability of the extreme properties from the point of view of all 
four methods.  

• The extrapolated estimate, its mean value and its confidence interval 
are computed. The latter is constructed with two methods: a 
“boundary” method, in which calculations are completed for the 
upper and lower boundaries of the parameters, accounting for their 
dependence, and with the CDF of the extrapolated estimate, avail-
able from Campbell et al. (2016). 

The numerical results of the GPD extrapolation are summarized in 
Tables 1 and 2. The data sets for extrapolation were selected to 
demonstrate three distinctive scenarios: positive shape parameter (data 
set 1, Fig. 4a), negative shape parameter, the right bound above the 

Fig. 3. (a) Decorrelation time for roll motions (b) Declustering roll motion data with the envelope.  
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target (data set 2, Fig. 5a) and negative shape parameter with right 
bound below the target (data set 3, Fig. 6a). 

The behavior of the shape parameters as a function of threshold 
value is different for the three scenarios. The estimate of the shape 
parameter for data set 1 increases and stabilizes around 0.2 at a 
threshold of 14◦, as shown in Fig. 4a. The shape parameter estimate for 
data set 2 settles around zero after 12◦, see Fig. 5a. The data set 3 esti-
mate stabilizes around the 12◦ threshold but stays negative, as shown in 
Fig. 6a. Such a strong influence of natural variability of the data on the 
behavior of the shape parameter estimates is likely a reflection of a slow 
convergence of the extreme value distributions. 

Another notable feature is the difference between the most probable 
estimates (the result of substituting the estimates of the parameters into 
equation (1)) and the mean values (the result of integration of the PDF of 
the extrapolated estimates), see Table 2. While the difference between 
the mean and most probable values is relatively small for the data set 1, 
it becomes noticeably larger for data set 2. As for the data set 3, the mean 
is the only non-zero value available, as the target is above the right 
bound, and the most probable extrapolated estimate is zero. 

4. Reduced-order model for roll peaks 

The significant influence of natural data variability on the estimate of 
shape parameter raises a natural question: are there any physical reasons 

Fig. 4. Selection of threshold for GPD for data set 1 (a) stabilization of shape parameter estimate (b) stabilization of modified scale parameter (c) minimization of 
error expressed with mode above threshold (d) minimization of error expressed with standard deviation above threshold. 

Table 1 
GPD fitting results.  

Data 
set 

Volume 
of sample 

Selected 
threshold, 
deg. 

Number of 
data points 
above the 
threshold 

Estimate of 
shape 
parameters 

Right 
bound, 
deg. 

1 1470 15.3 75 0.177 N/A 
2 1469 11.6 399 − 0.054 61.4 
3 1446 9.1 776 − 0.143 31.3  

Table 2 
Results of GPD extrapolation.  

Data 
set 

Most probable 
value 

Mean 
value 

“Boundary” 
method for 
confidence 
interval 

Application of 
CDF for 
extrapolated 
estimate 

low up low up 

1 1.56‧10− 3 2.59‧10− 3 0 0.016 0 0.013 
2 1.73‧10− 7 7.06‧10− 6 0 3.15‧ 

10− 4 
0 9.49‧ 

10− 5 

3 0 4.11‧ 
10− 10 

0 2.99‧ 
10− 7 

0 1.80‧ 
10− 10  

Fig. 5. Selection of threshold for GPD for data set 2 (a) stabilization of shape parameter estimate (b) stabilization of modified scale parameter (c) minimization of 
error expressed with mode above threshold (d) minimization of error expressed with standard deviation above threshold. 
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for the shape parameter to be positive or negative? Belenky et al. (2019) 
argues that the shape parameter has to be positive for the peaks of roll 
motion. The main points of the argument are reviewed below. 

A single degree-of-freedom (1-DOF) dynamical system with a 
piecewise linear (PWL) restoring function is a convenient model for 
theoretical study. It provides a qualitatively correct topology of the 
phase plane and offers closed-form solutions for many interesting 
problems (Belenky, 2000). Consider the differential equation: 

ϕ̈ + 2δϕ̇ + ω2
0fPWL(ϕ) = fEφ(t) (10)  

where δ is a linear damping coefficient and fEφ is a stationary stochastic 
process of roll excitation, while the roll restoring fPWL is shown in Fig. 7. 

fPWL(ϕ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k2(ϕ + ϕm1) + k1(ϕ − ϕm0) − ϕm0 if ϕ < − ϕm1

− k1(ϕ + ϕm0) − ϕm0 if  − ϕm1 ≤ ϕ < − ϕm0

ϕ if  − ϕm0 ≤ ϕ ≤ ϕm0

− k1(ϕ − ϕm0) + ϕm0 if ϕm0 < ϕ ≤ ϕm1

k2(ϕ − ϕm1) − k1(ϕ − ϕm0) + ϕm0 if ϕm1 < ϕ
(11) 

The slope coefficients for the piecewise linear terms k1 and k2 are 
defined as: 

k1 > 0 ; k2 =
k1(ϕm1 − ϕm0) − ϕm0

π − ϕm1
. (12) 

The differential equation (10) has a closed form solution within each 
range. As the equation (10) is linear within each range, the solution is 

presented as a sum of a general solution of the autonomous equation and 
a particular solution of heteronomous equation: 

ϕ =

⎧
⎨

⎩

ϕae− δt sin(ωd0t + ε) + p0(t); if − ϕm0 ≤ ϕ ≤ ϕm0
Aeλ1 t + Beλ2 t + p1(t) + ϕV ; if ϕm0 < ϕ ≤ ϕm1
ϕa2e− δt sin(ωd2t + ε2) + p2(t) + π; if ϕ > ϕm1

(13)  

where ϕa, ε, A, B, ϕa2 and ε2 are arbitrary constants that are dependent 
on the initial conditions at the “switching” of the ranges; ωd0 and ωd2 are 
frequencies of the damped oscillation in ranges 0 and 2, respectively; λ1 
and λ2 are eigenvalues for the solution in Range 1. p0, p1 and p3 are 
particular solutions, similar in shape to the excitation fEφ, i.e. stationary 
stochastic processes. 

The system (10) has all the properties of a nonlinear system; Belenky 
(2000) describes its nonlinear properties, typical of the softening 
nonlinearity, including:  

• Loss of isochronism, i.e. dependence of natural frequency on initial 
amplitude  

• Fold bifurcation: coexistence of low- and high- amplitude stable 
response to mono-periodic excitation of the same frequency, 
observed for excitation frequencies slightly lower than the natural 
frequency  

• Flip bifurcation: response period doubling sequence, leading to 
deterministic chaos under mono-periodic excitation with frequencies 
slightly higher than the natural frequency  

• Erosion of the safe basin (set of initial conditions in the phase plane 
that do not lead to capsizing) for large-amplitude mono-periodic 
excitation, with the frequency close to the natural frequency 

These phenomena are considered essential nonlinear behaviors, 
observed for a nonlinear dynamical system with softening nonlinearity – 
e.g. Duffing equation (Belenky and Sevastianov 2007). Equation (10) 
can, therefore, be considered a qualitative representation of a nonlinear 
dynamical system with softening nonlinearity. The latter is also 
considered as the simplest qualitative mathematical model of nonlinear 
roll motions. 

As the dynamical system (10) may be seen as a qualitative mathe-
matical model of nonlinear roll motions, consider a distribution of the 
local maxima of the solution (13) that exceeds the level of φm0 but is not 
of capsizing. 

A resonance phenomenon is not possible in Range 1 as the general 
solution of autonomous equation does not contain any oscillatory 
function. As a result: 

Fig. 6. Selection of threshold for GPD for data set 3 (a) stabilization of shape parameter estimate (b) stabilization of modified scale parameter (c) minimization of 
error expressed with mode above threshold (d) minimization of error expressed with standard deviation above threshold. 

Fig. 7. Piecewise linear restoring term.  
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Var(p0)≫Var(p1)≪Var(p2), (14)  

where Var(..) is a variance operator. More details on this argument can 
be found in Belenky et al. (2023). The eigenvalues for the solution in the 
Range 2 are: 

λ1,2 = − δ ±
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

kf 1ω2
0 + δ2

√

, (15)  

where kf1 is the absolute value of the slope of the stiffness function in 
Range 1. For the sake of simplicity of further derivation, the damping is 
assumed to be absent in Range 1, so: 

λ1 = − λ2 =

̅̅̅̅̅̅̅̅̅̅̅

kf 1ω2
0

√

= ωd1. (16) 

The solution (13) in Range 1 can then be expressed as: 

ϕ(t) = H cosh(ωd1t + ε) + ϕV if ϕm0 < ϕ ≤ ϕm1. (17) 

Arbitrary constants are expressed as: 

H(ϕ̇U) = −
1

ωd1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ω2
d1(ϕm0 − ϕV)

2
− ϕ̇

2
U

√

, (18)  

ε(ϕ̇U) = tanh− 1
(

ϕ̇U

ωd1(ϕm0 − ϕV)

)

. (19)  

where ϕ̇U is the roll rate at upcrossing. The value of the peak is expressed 
as 

ϕmax(ϕ̇U) = H(ϕ̇U) + ϕV ; 0 < ϕ̇U ≤ ϕ̇Cr , (20)  

where ϕ̇Cr is critical roll rate corresponding to capsizing conditions 
(Belenky et al., 2023 and the next section). 

Within the accepted assumptions, all the quantities in (20) are con-
stant with the exception of the roll rate at upcrossing ϕ̇U. This is a 
random variable, as stochastic excitation has been kept for Range 0. 
Assuming that upcrossings are rare, the general solution of the auton-
omous equation in Range 0 will have enough time to subside between 
upcrossings, so the distribution of the roll rate at upcrossing follows 
Rayleigh (Leadbetter et al., 1983, p. 201). The distribution needs to be 
normalized for the condition of the absence of capsizing (if capsizing 
happens, the ship is not returning to its initial equilibrium, and no roll 
peak will occur): 

PDF(ϕ̇U) =

(

1 − exp
(

−
ϕ̇

2
Cr

2Vφ̇

))
ϕ̇U

Vφ̇
exp
(

−
ϕ̇

2
U

2Vφ̇

)

,

0 < ϕ̇U ≤ ϕ̇Cr ,
(21)  

where Vϕ̇ is variance of roll rates. 
The distribution (21) can be used even if the upcrossings are clus-

tered, see Belenky et al. (2019) for details. Equation (20) is a deter-
ministic function of a single random variable with known distribution 
and the function is monotonic, so the distribution of the roll peaks/local 
maxima of the roll angles can be found and expressed as: 

PDF(ϕmax) = pdf
(
G− 1(ϕmax)

)
⃒
⃒
⃒
⃒
dG− 1(ϕmax)

dϕmax

⃒
⃒
⃒
⃒,

0 < ϕmax ≤ ϕV .
(22) 

G− 1 is an inverse of the function defined in equation (20): 

G− 1(ϕmax) = ωd1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(ϕm0 − ϕV)
2
− (ϕmax − ϕV)

2
√

. (23) 

As a result, the distribution density of the roll peaks is expressed in 
the following form: 

PDF(ϕmax) =
ϕV − ϕmax

C
exp

(

−
ω2

d1(ϕm0 − ϕV)
2

2Vφ̇

)

,

0 < ϕmax ≤ ϕV ,
(24)  

where 

C =
Vϕ̇

ω2
d1

(

exp

(

−
ω2

d1(ϕm0 − ϕV)
2

2Vϕ̇

)

− 1

)

. (25) 

As equation (24) presents the entire distribution of roll peaks for the 
piecewise linear system, it contains insight into how the PWL response 
differs from the linear response. The distribution of the peaks of a linear 
response can be approximated by a truncated Rayleigh distribution (e.g. 
Belenky and Campbell, 2012): 

PDF(ϕmax) = CL
ϕmax

Vϕ
exp
(

−
ϕ2

max

2Vϕ

)

, ϕmax > ϕm0, (26)  

where Vϕ is the variance of roll and CL is a normalizing constant: 

CL = exp
(

−
ϕ2

m0

2Vϕ

)

. (27) 

Fig. 8 has both PDFs. The peaks of the linear response are expected to 
follow an exponential tail, so the PWL response peaks have a heavy tail. 
The tail remains heavy until a large value near the angle of vanishing 
stability. The tail then becomes light, creating an inflection point. This 
inflection point is caused by the non-capsizing condition: closer to the 
angle of vanishing stability means more trajectories lead to capsizing. As 
the inflection point is close to the angle of vanishing stability, the tail of 
PWL peaks is heavy for most of Range 1 as is expected. 

Belenky et al. (2019) describes a solution without assuming zero 
damping in Range 1. The complete PDF cannot be expressed as a 
closed-form function but its behavior at the limit, when the roll angle 
approaches the angle of vanishing stability, points to a heavy tail. 

A completely different approach described in Belenky et al. (2019) 
assumes that the excitation is white noise and obtains the PDF from the 
Fokker-Plank-Kolmogorov (FPK) equation. While a realistic excitation 
is, of course, far from white noise, the shape of the PDF of a nonlinear 
response seems to be the same for weakly correlated or uncorrelated 
excitation (Maki, 2017). For the qualitative study described in this 
section, the assumption of white noise excitation seems to be quite 
appropriate. 

The FPK approach not only confirms that the tail is heavy but ex-
plains why. It is a result of the stretching of the phase plane caused by 
softening nonlinearity, as illustrated in Fig. 9a. The PDF in Fig. 9b in-
dicates three different types of behavior: Gaussian, corresponding to the 
Range 0 (area I), heavy tail (area II) and light tail in the Range 1 (area 
III) caused by the increased number of capsizings. 

Fig. 8. PDFs of peaks of linear response and piecewise response.  
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Another way to illustrate this stretching is to compare short portions 
of the time histories of the piecewise linear and linear systems, starting 
with some positive roll rate from the angle φm0 in Fig. 10. The response 
of the linear system is described by a trigonometric function, sine or 
cosine, with appropriate phase shift. The PWL response in the absence of 
capsizing is described by a hyperbolic cosine, equation (17). Hyperbolic 
cosine always stays above the trigonometric cosine for the same initial 
conditions. 

The PWL system spends more time in Range 1 than the linear system 
under the same initial conditions. As a result, the probability of finding 
the PWL system in Range 1 is higher and the tail of the response is 
heavier than the linear example. As both responses start from the same 
initial roll rate, the maximum of the PWL response must be larger than 
the linear case. Thus, the tail of peaks of the PWL response is heavier 
than the linear case in Fig. 8. 

5. Behavior of distribution tail of the roll peaks 

To test the theoretical conclusion of a heavy tail for the roll peak, the 
estimation of shape parameter was performed on the larger volume of 
the 3-DOF SimpleCode data for the tumblehome hull at eight different 
heading angles, shown in Table 3. These data sets have a ship speed of 6 
knots and wave parameters of 9 m significant wave height and 15 s 

modal period as described in Section 2. These data was used to estimate 
the shape parameter for a series of thresholds and construct the confi-
dence intervals as described in Campbell et al. (2016) or Belenky et al. 
(2023). The results are shown in Fig. 11. 

As the probability of the exceedance of a large roll angle significantly 
depends on the heading angle, the range of the thresholds for each 
heading angle is quite different in Fig. 11. The longest range has been 
observed for 60◦ heading, which also has the largest volume of sample. 
The different lengths of these ranges makes comparison of the shape 
parameter behavior more difficult, as shorter ranges do not necessarily 
demonstrate the complete picture. 

The change of the heading angles is expected to change the contri-
bution of stability variation and excitation in the likelihood of large roll 
angles. At the smallest (closest to following seas) heading angles of 15◦

and 22.5◦, the variation of stability is expected to be the largest, but the 
wave excitation of roll would be relatively small. In long-crested waves, 
the wave excitation is zero in exactly following seas. At 45◦ and 60◦

heading, the roll angles are the largest as stability variation is still 
strong, while the wave excitation is already strong. At 90◦, the range of 
thresholds decreases as the contribution from stability variation disap-
pears. As far as the 135◦ heading is concerned, the stability variation is 
present there, but cannot significantly influence the dynamics of roll as 
the encounter frequency becomes larger. 

The time interval of decreased stability still exists, but is too short for 
the ship to react with a large roll angle. That is why the headings 15–60◦

are considered separately, as the stability variation in waves is a sig-
nificant factor. Based on this argument, the structure of the tail of the 
roll peaks can be hypothesized to be the same across this heading range 
and the difference between Fig. 11a through 11f is a result of not 
observing all of the present phenomena for the smaller heading angles. 

The shape parameter in Fig. 11g is estimated from the beam seas 
data, where stability variation is not expected. The data exhibits bi- 
modality: the estimate becomes positive around 15◦, than drops to 
zero at around 20◦ and has a tendency to increase after 24◦. The latter 
tendency is an estimate, as the confidence interval becomes wide due to 
small sample volume at large thresholds. The 1-DOF reduced-order 
model (ROM) shows a combination of heavy and light tails. 

The appearance of a light tail in the ROM was explained by capsizing, 

Fig. 9. (a) Phase plane for the linear and PWL system (b) PDF for both systems.  

Fig. 10. Piecewise linear response above the knuckle point vs. linear response 
(Belenky et al., 2019). 

Table 3 
Conditions for study of shape parameter.  

Heading deg. Time, hrs. Heading deg. Time, hrs. 

15 10,000 45 10,000 
22.5 10,000 60 13,500 
30 10,000 90 10,000 
37.5 10,000 135 7,000  
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eliminating the population of roll peaks (a peak event is mutually 
exclusive with a capsizing event), but this was occurring close to the 
angle of vanishing stability. A plausible hypothesis is an energy transfer 
to another degree of freedom. As a result of this energy transfer, the 
population of large roll peaks can be decreased, leading to a decrease of 
the estimate of shape parameter. 

The energy transfer to other degrees of freedom may also be 
responsible for decreasing of the shape parameter estimates observed for 
45◦ and 60◦ of heading respectively (Fig. 11e and 11f). It seems to be 
occurring for larger thresholds: the first peak of the shape parameter 
estimate is around 18◦ for beams seas, while it shifts to about 22◦ for the 
headings of 45 and 60◦. Stability variation is an apparent explanation for 
this shift. 

The estimate of shape parameter for 135◦ heading (bow seas) seems 
to stabilize around the threshold of 14◦ with a negative value. Being the 
smallest sample in the shape parameter study, this case probably needs 
significantly more data for a conclusion. The wave excitation in oblique 
seas is reduced by heading and a widening of encounter spectrum (less 
energy in the resonance range), while stability variation does not affect 
the dynamics as much. 

If the hypothesis of energy transfer to other degrees of freedom is 
correct, energy transfer needs to be modeled with a ROM. However, at 
this time, it is considered a second-order influence, compared to the 
nonlinearity of the GZ curve. The assumption of heavy tail still stands for 
the first expansion, keeping in mind, that it is supported by the statistical 
validation by Campbell et al. (2023). 

6. Fitting the heavy tail 

6.1. Power law or Pareto tail 

To approximate a heavy tail of roll peaks, consider the GPD for ξ >
0 and set u = σ/ξ: 

PDFGPD(x)=
1
σ

(
1 + ξ

x − u
σ

)− (1+1/ξ)
=

1
σ

(

1 + ξ
x − σ/ξ

σ

)− (1+1/ξ)

=
1
σ

(
σ/ξ

x

)1+1/ξ

=
1
σ
(σ/ξ)1+1/ξ

x1+1/ξ =
1
ξ
(σ/ξ)1/ξ

x1+1/ξ .

(28) 

Using xm = σ/ξ =u and α= 1/ξ, equation (28) is known as Pareto 
distribution: 

Fig. 11. Behavior of shape parameter estimated over a large volume of data: blue line is a mean value of shape parameter, red lines are boundaries of confidence 
interval; (a) heading 15 deg. (b) heading 22.5 deg. (c) heading 30 deg. (d) heading 37.5 deg. (e) heading 45 deg. (f) heading 60 deg. (g) heading 90 deg. (h) heading 
135 deg. 
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PDFP(x)= α xα
m

x1+α, x≥ xm,α> 0. (29) 

The CDF is expressed as: 

CDFP(x)=
∫ x

xm

α xα
m

y1+α dy= 1−
(xm

x

)α
, x≥ xm;α> 0, (30)  

leading to the following equation for the distribution tail: 

P(X > x)=
(xm

x

)α
, x≥ xm,α> 0. (31) 

In general, the Pareto distribution can be used to approximate a 
heavy tail of any distribution. This type of tail is also referred as a 
“power law” tail to reflect the structure of equation (31). A distribution 
of a positive variable is said to have a power-law Pareto tail if 

P(X > x) = C(x)x− α, x > 0,  α > 0. (32)  

C(x) is the so-called “slowly varying” function at infinity. The simplest 
example of such a slowly varying function is any positive function 
satisfying C(x)∼ C with a positive constant C as x approaches infinity. 
Another example would be for C(x) ~x as x increases. Following the 
results from the previous section, the distribution of the envelope of the 
peaks of roll motion is suggested to be heavy-tailed. 

The Pareto distribution has an important property: it becomes 
exponential if its argument is 

w=G(x)= ln(x) − ln(xm). (33) 

To find a distribution of a function of a random variable G(x), one 
needs to invert this function and differentiate the inverse function (see 
section 5.7 of Ross (1997) or chapter 7 of Walpole et al. (2012)): 

G− 1(w) = xm exp(w);
dG− 1(w)

dw
= xm exp(w). (34) 

The distribution of w = G(x) is then expressed as: 

PDF(w) = PDFP
(
G− 1(w)

) dG− 1(w)
dw

=
α xα

mxm exp(w)
(xm exp(w) )1+α = α exp( − αw).

(35) 

The PDF (35) is an exponential distribution with parameter α. Recall 
that the mean value and variance of an exponential random variable are 
expressed as: 

E(w) =
1
α = ξ; Var(w) =

1
α2 = ξ2. (36) 

The Pareto distribution has only one parameter – the shape param-
eter – to fit. The value xm plays the role of the threshold and it is selected 
to minimize the fitting error. So the shape parameter needs to be esti-
mated first. While the shape parameter is essentially the same as for the 
GPD, it make sense to use a different symbol as the methods for esti-
mating the parameters are different for GPD and the power law/Pareto 
tail: 

γ =
1
α= ξ. (37) 

As the estimation of the parameter γ needs to be done for a series of 
candidate thresholds (as was done for the GPD case), it is convenient to 
sort the data in descending order: 

φ→= sortdesc

(

ϕ
→

ep

)

⇒φn ≤ … ≤ φ1, (38)  

ϕ
→

ep are the mean-crossing peaks of the envelope of roll motions (see 
Fig. 3b). The vector φ→ is the upper order statistics of the data – i.e. the 
observed values, sorted in descending order. 

A number of ways to estimate the parameter γ have been proposed in 
the literature (e.g. Beirlant et al., 2004). The most commonly used 

estimator of γ is the Hill estimator defined as 

γ̂ k =
1
k

∑k

j=1

(
ln
(
φj
)
− ln(φk+1)

)
. (39) 

The index k refers to the number of upper order statistics used in the 
estimation, so the index k+1 refers to the index corresponding to the 
candidate threshold, i.e. φk+1 = u: 

φn ≤ φn− 1 ≤ … ≤ φk+2 ≤ (φk+1 = u)
≤ φk ≤ φk− 1 ≤ … ≤ φ2 ≤ φ1⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

k

.
(40) 

Note that the Hill estimator is essentially an average of the logarithm 
of data values above the threshold. As the logarithm of the data values 
(33) follows exponential distribution (35), the Hill estimator (39) is 
consistent with equation (36). For a large k, 
̅̅̅
k

√
(γ̂ k − γ)≈ N

(
0, γ2). (41)  

N (μ,V) refers to a normal distribution with mean μ and variance V, 
which can be used to set confidence intervals in the standard way. 

6.2. Finding a threshold for power law/Pareto tail model 

A number of methods are also available to select the index k or 
threshold u = φk+1, above which the distribution is considered to be 
power-law or Pareto in the form: 

P(φ > φ∗) =
( u

φ∗

)1/γ
, φ∗ > u. (42) 

One of these methods is based on the so-called prediction error cri-
terion (Dupuis and Victoria-Feser, 2006; Mager, 2015). Let 

si = ln(φi) − ln(u), i = 1,…, k. (43) 

The prediction criterion concerns the mean squared prediction error, 
defined as (using symbol E for averaging): 

Γ(k) =
1
k

∑k

i=1
E

(
ŝi − E(si)

̅̅̅̅̅
Vi

√

)2

, (44)  

where Vi = Var(si) is the variance and ŝi is the estimated value of si 
according to the model with power-law Pareto tail of distribution. 
Following Lemma 4.2 in Mager (2015), one can consider expected value 
of square of the difference between random variable a andthe expected 
value of a random variable b, where a and b are correlated, i.e. Cov(a,
b) ∕= 0: 

E
(
(a − E(b) )2 )

= E
(
a2 − 2aE(b) + (E(b) )2 )

= E
(
a2) − 2E(a)E(b) + (E(b) )2

= E
(
a2) − 2E(a)E(b) + (E(b) )2

+2E(ab) − 2E(ab) + E
(
b2) − E

(
b2)

= E
(
a2) − 2E(ab) + E

(
b2)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
E((a− b)2 )

+ 2E(ab) − 2E(a)E(b)
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

2Cov(a,b)

−
(
E
(
b2) − (E(b) )2 )

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
Var(b)

= E
(
(a − b)2 )

+ 2Cov(a, b) − Var(b).

(45) 

Substituting (45) into (44), the mean squared prediction error Γ(k)
can be expressed as: 

Γ(k) =
1
k
∑k

i=1
E

(
ŝi − si
̅̅̅̅̅
Vi

√

)2

+
2
k
∑k

i=1

Cov(ŝi , si)

Vi
− 1. (46) 

As the variance of the data above the threshold Vi = Var(si) is not 
known, it is substituted by its estimate V̂ i = V̂ar(si). The covariance 
Cov(ŝi , si) is also substituted by its estimate Ĉov(ŝi , si). Note that the 
symbol “hat” is used here with two slightly different meanings: ŝi is a 
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value estimated by power-law Pareto tail model (31), while si are 
observed values above the threshold u, equation (43). Quantities V̂ i and 
Ĉov( ŝi , si) are estimated from these observed values, leading to the 
estimated prediction error: 

Γ̂(k) =
1
k
∑k

i=1

(
ŝi − si
̅̅̅̅̅

V̂ i

√

)2

+
2
k
∑k

i=1

Ĉov(ŝi , si)

V̂ i
− 1. (47) 

The index for the selected threshold u is chosen as that minimizing 
Γ̂(k) over some range of values k. Mager (2015) suggests setting the 
range [max(40,0.02n),0.2n]. 

To conclude the description of the method, the quantities of ŝ i, 
V̂ar(si) and Ĉov(ŝi , si) in the definition of Γ̂(k) need to be specified. 

6.3. Order statistics and their variance 

Further considerations require application of the apparatus of order 
statistics (e.g. David and Nagaraja, 2005), which is widely used in 
financial applications but relatively rare in engineering. Note that order 
statistics are defined in ascending order, while here the sorting is done in 
descending order (see equation (38)). The term “upper order statistics” 
indicates sorting in descending order. A distribution of k-th order sta-
tistics for a sample with n points is expressed as: 

PDFk(x)=
n!

(k− 1)!(n − k)!
PDF(x)(CDF(x))k− 1

(1 − CDF(x))n− k
. (48) 

For upper order statistics, the distribution is (Embrechts et al., 2013, 
Proposition 4.1.2) 

PDFk(x)=
n!

(k− 1)!(n − k)!
PDF(x)(1 − CDF(x))k− 1

(CDF(x))n− k
. (49) 

The cited reference also contains a formula and a heuristic argument 
(as the data points are independent and there are n! ways to collect n 
numbers) for the joint distribution of all n upper order statistics: 

PDF(x1,…, xn) = n!
∏n

i=1
PDF(xi), x1 > x2 > … > xn. (50) 

As shown in equations 34 and 35, the logarithm function (33) of 
Pareto-distributed argument follows exponential distribution with mean 
γ. Consider joint distribution of upper order statistics y of independent 
variables following exponential distribution with mean γ = 1: 

PDFE1(y1,…, yn) = n!exp
(
−
∑n

i=1yi
)
,

y1 > y2 > … > yn.
(51) 

Consider joint distribution of scaled differences between the upper 
order statistics, referred to as “spacing” in Example 4.1.5 from 
Embrechts et al. (2013), and defined as: 

z→T = (y1 − y2, 2(y2 − y3),…, (n − 1)(yn− 1 − yn), nyn )

or  zi = i(yi − yi+1); i = 1,…n + 1 with  yn+1 = 0, (52)  

where superscript T indicates transposition. While y1 > y2 > … > yn, 
note zi > 0, i = 1,…, n. Transformation from the vector y→=

(y1,…, yn)
T to z→ is defined as: 

z→= H( y→) = M y→, (53)  

M=

⎛

⎜
⎜
⎜
⎜
⎝

1 − 1 0 … 0
0 2 − 2 … 0
0 0 3 … 0
… … … … …
0 0 0 … n

⎞

⎟
⎟
⎟
⎟
⎠
. (54) 

The distribution of the spacing is expressed as (e.g. chapter 6.7 of 
Ross, 1997): 

PDF( z→) = PDFE1
(
H− 1( z→)

)

⃒
⃒det
(
J
(
H− 1( z→)

) )⃒
⃒, (55)  

where H− 1( z→) is the inverse of transformation (53) and J is its Jacobian 
matrix: 

y→= H− 1( z→) = z→T M− 1, (56)  

M− 1 =

⎛

⎜
⎜
⎜
⎜
⎝

1 2− 1 3− 1 … n− 1

0 2− 1 3− 1 … n− 1

0 0 3− 1 … n− 1

… … … … …
0 0 0 … n− 1

⎞

⎟
⎟
⎟
⎟
⎠
. (57)  

As the inverse transformation (56) is linear, J(H− 1( z→)) = M− 1 and 

det
(
J
(
H− 1( z→)

))
= det

(
M− 1)=(det(M))

− 1
=(n!)− 1

. (58) 

The inverse transformation (56) can be expressed as a vector: 

y→=

(
∑n

j=1
zj

j
,
∑n

j=2
zj

j
,…,

zn

n

)T

, or

yi =
∑n

j=i

zj

j
; i = 1,…n.

(59) 

Substitution of equations (51), (58) and (59) into equation (55) leads 
to the following distribution for z→: 

PDFz(z1,…, zn) = exp

(

−
∑n

i=1

∑n

j=i

zj

j

)

= exp

(

−
∑n

i=1
zj

)

(60)  

as 

∑n

i=1

∑n

j=i

zj

j
=

z1 +
z2

2
+

z3

3
+…+

zn

n
+

z2

2
+

z3

3
+…+

zn

n
+

z3

3
+…+

zn

n
…

+
zn

n
=
∑n

i=1
zi.

The equation (60) is the distribution of n independent exponential 
random variables with parameter 1. The variance of each of the 
component of vector z→ is unity, i.e. Var(zi)= 1. Recalling that the un-
derlying random variables of upper order statistics si, defined in equa-
tion (43), follow exponential distribution with mean γ, then: 

si = γyi = γ
∑k

j=i

zj

j
. (61) 

The variance of the i-th upper order statistic is: 

Vi =Var(si)= γ2
∑k

j=i

Var(zi)

j2 = γ2
∑k

j=i

1
j2, (62)  

which can be estimated as: 

V̂ i = γ̂2
k

∑k

j=i

1
j2, (63)  

where γ̂k is defined with equation (39). 

6.4. Covariance of the order statistics and estimates at the tail 

The estimator ŝi of si is defined as follows. The quantity si can be 
thought as the (1 − i/(k+1))th quantile of the exponential distribution: 

i
k + 1

= exp
(

−
ŝi

γ̂ k

)

⟺ŝi = − γ̂ k ln
(

i
k + 1

)

. (64) 

To find the covariance Cov(ŝi, si) for equation (46), equations (43) 
and (39) can substituted into (64), yielding the following expression for 
the estimated value in the tail ŝi: 
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ŝi = − ln
(

i
k + 1

)
1
k
∑k

j=1
sj. (65) 

The formula (65) is used in Cov(ŝi,si), recalling that k is the index for 
the candidate threshold u = sk+1 and i is a counter in a sum in the pre-
diction error Γ(k), defined by equation (46). So, for a particular candi-
date threshold index k and the i-th term in (46), the term ln(1 − i /(k+1))
is a constant. Also, the operations of summation and computation of 
covariance can be swapped: 

Cov(ŝi, si) = −
1
k

ln
(

i
k + 1

)

Cov

(
∑k

j=1
sj, si

)

= −
1
k

ln
(

i
k + 1

)
∑k

j=1
Cov

(
sj, si

)
. (66) 

The upper order statics si can be expressed through spacings zi that 
are independent random variables following exponential distribution, 
see equation (61). 

Cov
(
sj, si

)
= Cov

(

γ
∑k

m=j

zm

m
, γ
∑k

j=i

zj

j

)

= γ2
∑k

m=j

∑k

j=i

1
m j

Cov
(
zm, zj

)
. (67) 

As the random variables zi are exponentially distributed with mean 
1, their variance is also 1. As they are also independent, the covariance is 
zero unless the indexes are the same. 

Cov
(
zm, zj

)
=

{
1 if j = m
0 otherwise (68) 

The double sum in equation (67) can be substituted with a single sum 
with the summation starting from the maximum of the indexes of i and j: 

Cov
(
sj, si

)
= γ2

∑k

m=max (j,i)

1
m2 = γ2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑k

m=i

1
m2 ifj ≤ i

∑k

m=j

1
m2 otherwise

(69)  

Then, presenting sum in (67) in two components 
∑k

j=1Cov
(
sj, si

)

=
∑i

j=1
Cov

(
sj, si

)
+
∑k

j=i+1
Cov

(
sj, si

)

= γ2

(
∑i

j=1

∑k

m=i

1
m2 +

∑k

j=i+1

∑k

m=j

1
m2

)

= γ2

(

i
∑k

m=i

1
m2 +

∑k

j=i+1

∑k

m=j

1
m2

)

.

(70) 

A sum of 1/m2 can be approximated as 

∑k

m=i

1
m2 ≈

∫ k+1

i

dx
x2 =

k + 1 − i
i(k + 1)

≈
1
k

(
k + 1

i
− 1
)

. (71) 

Using this approximation in (70) yields: 

∑k

j=1
Cov

(
sj, si

)
≈

γ2

k

(

1+
∑k

j=i+1

k+1
j

)

. (72) 

Recognizing that for relatively large k 

1
k

(

1 +
∑k

j=i+1

k + 1
j

)

≈
∑k

j=i+1

1
j

≈

∫ k+1

i

dx
x
= ln

(
k + 1

i

)

,

(73)  

and using (72) in (66), one can get 

Cov(ŝi, si)≈ −
γ2

k
ln
(

k+1
i

)

ln
(

i
k+1

)

=
γ2

k

(

ln
(

i
k+1

))2

, (74)  

suggesting the use of: 

Ĉov(ŝi, si) =
γ̂2

k

k

(

ln
(

i
k + 1

))2

. (75)  

6.5. Extrapolation estimate and its uncertainty 

Substituting quantities from equations (63), (64) and (75) into the 
definition of Γ̂(k) from equation (47) leads to a computable expression 
for the prediction error function: 

Γ̂(k) =
1

k γ̂k
2

∑k

i=1

(
∑k

j=i

1
j2

)− 1(

si + γ̂k ln
(

i
k + 1

))2

+
2
k2

∑k

i=1

(
∑k

j=i

1
j2

)− 1(

ln
(

i
k + 1

))2

− 1. (76) 

The threshold u is selected as a minimum of the prediction error 
function Γ̂(k). 

k = argmin(Γ̂(k) ); u = φk. (77) 

Once the threshold has been selected, the Hill estimator γ̂ is 
computed with equation (39) 

An example of Γ̂(k), computed for data set 1, is shown in Fig. 12. The 
selected thresholds, number of points above these thresholds and 
resulting value of the Hill estimator (39) are presented in the Table 4. As 
it can be seen from Table 4, the values of the thresholds and Hill esti-
mators are relatively close for all three data sets. 

An estimate of the probability of exceedance of the target value, 
under the condition that the threshold u has been also exceeded, is 
competed with formula (31): 

P̂(ϕ > ϕ∗|φ > u) =
(

ϕ∗

u

)− 1
γ̂

. (78) 

To construct a confidence interval of the extrapolated estimate, the 
variance of the Hill estimator from equation (39) is expressed as follows 
(see equation (41)): 

V̂ γ =
γ̂2

k
. (79) 

The boundaries of the confidence interval of the Hill estimator are: 

γ̂ up,low = γ̂ ± QN V̂
0.5
γ , (80)  

where QN is the quantile of a standard normal distribution corre-
sponding to probability 0.5(1 + Pβ1), whereas Pβ1 =

̅̅̅̅̅
Pβ

√
, while 

Pβ= 0.95 is the confidence interval accepted for the entire estimate of 
the rate of exceedances – extrapolated estimate still needs to be multi-
plied by the estimate of rate of upcrossing the selected threshold. 

The boundaries of the confidence interval of the extrapolated esti-

Fig. 12. Selecting a threshold with prediction error criterion for the data set 1.  
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mate are: 

P̂(ϕ > ϕ∗|ϕ > u)up,low =

(
ϕ∗

u

)− 1
γ̂up,low

. (81) 

Numerical results of the calculation of the extrapolated estimates for 
all three data sets are presented in Table 5. The consistency of these 
estimates is noteworthy, especially as compared to the GPD extrapola-
tion results summarized in Table 2. 

The confidence interval for the threshold upcrossing rate is con-
structed from its binomial distribution with the parameter p̂U = r̂UΔt: 

r̂U,low = QB

(
1 − Pβ1

2
; p̂U , k

)

,

r̂U,up = QB

(
1 + Pβ1

2
; p̂U , k

)

,

(82)  

where QB is a quantile of the binomial distribution corresponding to the 
probability 0.5(1±Pβ1), number of trials k and probability p̂U. 

Finally, 

r̂ϕ∗,low = r̂U,low P̂(ϕ > ϕ∗|ϕ > u)low,

r̂ϕ∗,up = r̂U,up P̂(ϕ > ϕ∗|ϕ > u)up.
(83) 

The numerical results for all three data sets are shown in Fig. 13. 
When GPD was able to recover the positive shape parameter (data set 1), 
the heavy tail and GPD results are reasonably close. Both GPD and heavy 
tail extrapolation have captured the “true” value estimate from the full 
set of validation data (Campbell et al., 2023). GPD is slightly more 
conservative on the upper confidence interval boundary, as compared to 
the heavy tail. The difference in lower boundaries is more dramatic, but 
the lower boundary has a little practical importance. 

A larger difference between the GPD and heavy tail extrapolation is 
observed for data set 2, where GPD shape parameter was estimated to be 
negative. The most probable GPD estimate is three orders of magnitude 
smaller than the “true” value, while the GPD mean value fares a bit 
better. The GPD upper boundary based on CDF has failed (5.7 × 10− 7 1/ 
s > 4.8 × 10− 7 1/s), though the boundary method still worked due to its 
conservatism. The heavy tail extrapolation has recovered the “true” 
value from the same data set without any apparent problems. Finally, 
GPD extrapolation has completely failed on the data set 3, while the 
heavy-tail extrapolation exhibited a lower boundary but still has 
captured the “true” value within its confidence interval. 

In general, the heavy tail extrapolation, when applicable, provides a 
more robust technique as compared to GPD. It also provides a substan-
tial reduction in the width of the confidence interval. The latter is in line 
with the results of Glotzer et al. (2017) and supports the conclusions of 
the statistical validation effort described in Campbell et al. (2023). 

7. Summary 

The current development of the Envelope Peak-over-Threshold 
(EPOT) technique application for the roll motion of a ship is summa-
rized. EPOT is, essentially, a conventional Peak-Over-Threshold (POT) 
approach, where an envelope of the self-dependent data is applied to 
provide independent data. The Generalized Pareto Distribution (GPD) is 
a standard statistical model for approximating the tail of the 
distribution. 

The application of the GPD to a practical volume of roll motion data 
may have issues, caused by natural variability of the shape parameter 
estimate. These issues may lead to an underestimation of an extrapo-
lated estimate or an inability to complete the extrapolation due to the 
natural variability of the shape parameter estimate. The process of 
fitting the GPD tail is reviewed, and three numerical examples are 
considered: one, for which GPD works as expected, the second, when 
extrapolation nearly fails, and a third when it fails completely. 

Analysis of the response of a reduced-order model (ROM) of roll 
motion with piecewise linear restoring leads to the conclusion that the 
shape parameter should be positive for large roll peaks. The paper re-
views that solution and further examines the behavior of the shape 
parameter for relatively large samples of simulation data for ONR 
Tumblehome configuration at different headings. Complex tail struc-
tures were observed for stern quartering and beam seas, but the hy-
pothesis of positive shape parameter was not rejected. 

The physics-informed statistical model was formulated based on the 
hypothesis of positive shape parameter. The power-law/Pareto tail was 
used to model extremes of roll peaks. The paper addresses the selection 
of the threshold for the power-law tail with prediction error criterion 
and the construction of a confidence interval for the extrapolated esti-
mates. Power law-tail calculations were performed for the same nu-
merical examples and the results are compared with the GPD 
extrapolation. 

8. Conclusions and future outlook 

A physics-informed approach to extrapolation takes full advantage of 
the extreme value theory and augments it with application-specific 
physical information, improving robustness of the prediction and 
decreasing its statistical uncertainty. For a dynamical system with a 
softening nonlinearity in restoring, large peaks of roll motion are ex-
pected to have a power-law tail. The physical reason is that the softening 
nonlinearity makes a ship spend relatively more time at large roll angles 
near the maximum of the GZ curve. Including a requirement for a pos-
itive shape parameter into statistical model means using physics infor-
mation – thus justifying the name of approach. 

Two caveats are worth mentioning. The first is that the subject of 
these studies was the ONR Topside Series tumblehome configuration, 
which is known for its significant stability variation in following and 
stern-quartering seas. It would be beneficial to extend the study to other 
hull forms. 

The second caveat is that complex structure of the distribution tail of 
roll peaks was observed. This complex structure is likely driven by the 
influence of other degrees of freedom and by stability variation in 
waves. To test this hypothesis, it would be beneficial to find out what 
phenomena form the tail structures. The tail structure for the bow seas 
heading remain unknown due to insufficient data. Resolving these ca-
veats will help to extend and improve physics-informed statistical 
models of roll motions and should be considered for future research. 
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