Publications by Area

Bayesian Analysis and Optimal Experimental Design

Prediction of Extremes

Statistics of Extremes


Dynamically Orthogonal Equations for Uncertainty Quantification of Dynamical Systems

Stochastic Closures and Data-Driven Modeling for Dynamical Systems

Optimal Time Dependent Modes for Reduced Order Modeling & Control of Transient Instabilities


Ship and Submarine Dynamics and Loads

Computational Methods for Climate Modeling

Bubbles and Particles in Fluid Flows

Nonlinear Mechanical Oscillations


Bayesian Analysis and Optimal Experimental Design
Theory-Algorithms

E. Pickering, T. Sapsis, Information FOMO: The unhealthy fear of missing out on information. A method for removing misleading data for healthier models, Submitted, (2023) (14 pages). [pdf]

J. Zhang, L. Cammarata, C. Squires, T. P. Sapsis, and C. Uhler, Active learning for optimal intervention design in causal models, Nature Machine Intelligence, (2023)  [pdf] Featured on the MIT News

E. Pickering, S. Guth, G. Karniadakis, T. Sapsis, Discovering and forecasting extreme events via active learning in neural operators, Nature Computational Science, 2 (2022) 833-843. [pdf]

T. Sapsis, A. Blanchard, Optimal criteria and their asymptotic form for data selection in data-driven reduced-order modeling with Gaussian process regression, Philosophical Transcations of the Royal Society A, 380 (2022) 20210197 (12 pages). [pdf]

A. Blanchard, T. Sapsis, Output-weighted optimal sampling for Bayesian experimental design and rare-event quantification, SIAM/ASA Journal of Uncertainty Quantification, 9 (2021) 564-592. [code] [pdf]

S. Rudy, T. Sapsis, Sparse methods for automatic relevance determination, Physica D, 418 (2021) 132843 (16 pages). [code] [pdf]

A. Blanchard, T. Sapsis, Bayesian optimization with output-weighted optimal sampling, Journal of Computational Physics, 425 (2021) 109901 (16 pages). [code][pdf]

T. Sapsis, Output-weighted optimal sampling for Bayesian regression and rare event statistics using few samples, Proceedings of the Royal Society A, 476 (2020) 20190834 (24 pages). [pdf]

M. Mohamad, T. Sapsis, A sequential sampling strategy for extreme event statistics in nonlinear dynamical systems, Proceedings of the National Academy of Sciences, 115 (2018) 11138-11143. [open access link] [supporting information]

Applications

S. Guth, E. Katsidoniotaki, T. Sapsis, Statistical modeling of fully nonlinear hydrodynamic loads on offshore wind turbine foundations using wave episodes and targeted CFD simulations through active sampling (2023), Wind Energy, In Press (36 pages). [pdf].

B. Hammond, T. Sapsis, Reduced order modeling of hydrodynamic interactions between a submarine and unmanned underwater vehicle using non-myopic multi-fidelity active learningJournal of Ocean Engineering, 288 (2023) 116016. [pdf]

Y. Yang, A. Blanchard, T. Sapsis, P. Perdikaris, Output-weighted sampling for multi-armed bandits with extreme payoffs, Proceedings of the Royal Society A, 478 (2022) 20210781 (17 pages). [code] [pdf]

A. Blanchard, G. C. Maceda, D. Fan, Y. Li, Y. Zhou, B. Noack, T. Sapsis, Bayesian optimization for active flow control, Acta Mechanica Sinica, 37 (2022) 1786-1798. [pdf]

A. Blanchard, T. Sapsis, Informative path planning for anomaly detection in environment exploration and monitoring, Ocean Engineering, (2021) 43 110242 (10 pages). [pdf]


Prediction of Extremes
Expositories-Reviews

M. Farazmand, T. Sapsis, Extreme events: mechanisms and prediction, ASME Applied Mechanics Reviews, 71(2019) 050801. Received the Lloyd Hamilton Donnell Best Paper Award for 2020. [pdf]

T. Sapsis, New perspectives for the prediction and statistical quantification of extreme events in high-dimensional dynamical systemsPhilosophical Transactions of the Royal Society A376 (2018) 20170133 (18 pages). [pdf]

M. Farazmand, T. Sapsis, Physics-based probing and prediction of extreme eventsSIAM News51 (2018) 1. [link] [pdf]

Theory-Algorithms

E. Pickering, S. Guth, G. Karniadakis, T. Sapsis, Discovering and forecasting extreme events via active learning in neural operators, Nature Computational Science, 2 (2022) 833-843. [pdf]

S. Rudy, T. Sapsis, Output-weighted and relative entropy loss functions for deep learning precursors of extreme events, Physica D,443 (2023) 133570 (12 pages). [pdf]

A. Blanchard, T. Sapsis, Bayesian optimization with output-weighted importance sampling, Journal of Computational Physics, 425 (2021) 109901 (16 pages). [code][pdf]

S. Guth, T. Sapsis, Machine learning predictors of extreme events occurring in complex dynamical systems, Entropy, 21 (2019) 925 (18 pages). [Code][pdf]

M. Farazmand, T. Sapsis, A variational approach to probing extreme events in turbulent dynamical systemsScience Advances3:e1701533 (2017) (7 pages). [pdf]

W. Cousins, T. Sapsis, Reduced order precursors of rare events in unidirectional nonlinear water waves, Journal of Fluid Mechanics790 (2016) 368-388. [pdf] Featured as MIT spotlight. Reported by The Economist.

W. Cousins, T. Sapsis, Quantification and prediction of extreme events in a one-dimensional nonlinear dispersive wave modelPhysica D, 280-281 (2014) 48-58. [pdf]

Applications

B. Barthel, T. Sapsis, Harnessing the instability mechanisms in airfoil flow for the data-driven forecasting of extreme events, American Institute of Aeronautics and Astronautics (AIAA) Journal, 61 (2023). [pdf]

S. Rudy, T. Sapsis, Prediction of intermittent fluctuations from surface pressure measurements on a turbulent airfoil, American Institute of Aeronautics and Astronautics (AIAA) Journal, 60 (2022) 4174-4190. [pdf]

P. Blonigan, M. Farazmand, T. Sapsis, Are extreme dissipation events predictable in turbulent fluid flows?Physical Review Fluids, 4 (2019) 044606 (21 pages). [pdf]

M. Farazmand, T. Sapsis, Closed-loop adaptive control of extreme events in a turbulent flowPhysical Review E100 (2019) 033110 (7 pages). [pdf]

W. Cousins, M. Onorato, A. Chabchoub, T. Sapsis, Predicting ocean rogue waves from point measurements: an experimental studyPhysical Review E, 99 (2019) 032201 (9 pages). [pdf]

Z. Y. Wan, P. Vlachas, P. Koumoutsakos, T. Sapsis, Data-assisted reduced-order modeling of extreme events in complex dynamical systemsPLOS One, 24 May (2018) (22 pages). [pdf]

M. Farazmand, T. Sapsis, Reduced-order prediction of rogue waves in two dimensional water wavesJournal of Computational Physics340 (2017) 418-434. [pdf]

M. Farazmand, T. Sapsis, Dynamical indicators for the prediction of bursting phenomena in high-dimensional systemsPhysical Review E94 (2016) 032212 (15 pages). [pdf] Featured on the Physical Review E: Kaleidoscope.

W. Cousins, T. Sapsis, The unsteady evolution of localized unidirectional deep water wave groupsPhysical Review E91 (2015) 063204 (5 pages). [pdf]


Order Reduction for Uncertainty Quantification of Dynamical Systems
Theory-Algorithms

S. Mowlavi, T. Sapsis, Model order reduction for stochastic dynamical systems with continuous symmetriesSIAM Journal on Scientific Computing40 (2018) 1669-1695. [pdf]

T. Sapsis, A. Majda, Statistically accurate low order models for uncertainty quantification in turbulent dynamical systemsProceedings of the National Academy of Sciences110 (2013) 13705-13710.[pdf]

T. Sapsis, A. Majda, Blending modified Gaussian closure and non-Gaussian reduced subspace methods for turbulent dynamical systemsJournal of Nonlinear Science23 (2013) 1039 (33 pages). [pdf]

T. Sapsis, A. Majda, Blended reduced subspace algorithms for uncertainty quantification of quadratic systems with a stable mean statePhysica D258 (2013) 61-76. [pdf]

T. Sapsis, Attractor local dimensionality, nonlinear energy transfers, and finite-time instabilities in stochastic dynamical systems with applications to 2D fluid flowsProceedings of the Royal Society A469 (2013) 20120550 (23 pages). [pdf]

T. Sapsis & P. Lermusiaux, Dynamical criteria for the evolution of the stochastic dimensionality in flows with uncertaintyPhysica D241 (2012) 60-76. [pdf]

T. Sapsis & P. Lermusiaux, Dynamically orthogonal field equations for continuous stochastic dynamical systemsPhysica D238 (2009) 2347-2360. [pdf]

Applications

S. Guth, A. Mojahed, T. Sapsis, Quality measures for the evaluation of machine learning architectures on the quantification of epistemic and aleatoric uncertainties in complex dynamical systemsComputer Methods in Applied Mechanics and Engineering, (2024) In Press (27 pages) [pdf].

B. Champenois, T. Sapsis, Machine learning framework for the real-time reconstruction of regional 4D ocean temperature fields from historical reanalysis data and real-time satellite and buoy surface measurementsPhysica D, 459 (2024) 134026. [pdf].

H. Babaee, M. Choi, T. Sapsis, G. Karniadakis, A robust bi-orthogonal/dynamically-orthogonal method using the covariance pseudo-inverse with application to stochastic flow problemsJournal of Computational Physics344 (2017) 303-319. [pdf].

M. Choi, T. Sapsis, G. E. Karniadakis, On the equivalence of dynamically orthogonal and dynamically bi-orthogonal methods: Theory and numerical simulationsJournal of Computational Physics270 (2014) 1-20. [pdf]

M. Ueckermann, P. Lermusiaux, T. Sapsis, Numerical schemes for dynamically orthogonal equations of stochastic fluid and ocean flowsJournal of Computational Physics233 (2013) 272-294. [pdf]

T. Sapsis, and H. A. Dijkstra, Interaction of additive noise and nonlinear dynamics in the double-gyre wind-driven ocean circulationJournal of Physical Oceanography43 (2013) 366-381. [pdf]

T. Sapsis, M. Ueckermann, P. Lermusiaux, Global analysis of Navier-Stokes and Boussinesq stochastic flows using dynamical orthogonalityJournal of Fluid Mechanics734 (2013) 83-113. [pdf]

M. Choi, T. Sapsis, G. E. Karniadakis, A convergence study for SPDEs using combined polynomial chaos and dynamically-orthogonal schemesJournal of Computational Physics245 (2013) 281-301. [pdf]


Computational methods for climate modeLs

B. Champenois, T. Sapsis, Machine learning framework for the real-time reconstruction of regional 4D ocean temperature fields from historical reanalysis data and real-time satellite and buoy surface measurements, Physica D, 459 (2024) 134026 (14 pages) . [pdf].

A. Charalampopoulos, S. Zhang, B. Harrop, L. R. Leung, and T. Sapsis, Statistics of extreme events in coarse-scale climate simulations via machine learning correction operators trained on nudged datasets, AAAI Conference: AI Climate Tipping-Point Discovery (3-2023). [pdf]

A. Blanchard, N. Parashar, B. Dodov, C. Lessig, T. Sapsis, A multi-scale deep learning framework for projecting weather extremes, Tackling Climate Change with Machine Learning workshop at NeurIPS 2022, New Orleans (12-2022). Best Paper: ML Innovation [pdf] [link]

Z. Wan, B. Dodov, C. Lessig, H. Dijkstra, T. Sapsis, A data-driven framework for the stochastic reconstruction of small-scale features with application to climate data sets, Journal of Computational Physics, 442 (2021) 110484 (24 pages). [movie] [pdf]


Nonlinear Mechanical Oscillations
Nonlinear Energy Transfers in Mechanical Systems

J. E. Chen, T. Theurich, M. Krack, T. Sapsis, L. A. Bergman, A. F. Vakakis, Intense cross-scale energy cascades resembling “mechanical turbulence” in harmonically driven strongly nonlinear hierarchical chains of oscillators, Acta Mechanica, 233 (2022) 1289-1305. [pdf]

A. Blanchard, T. Sapsis, A. Vakakis, Non-reciprocity in nonlinear elastodynamicsJournal of Sound and Vibration412 (2018) 326-335. [pdf]

O. Gendelman, T. Sapsis, Energy exchange and localization in essentially nonlinear oscillatory systems: Canonical formalismASME Journal of Applied Mechanics84 (2017) 011009 (9 pages). [pdf]

T. Sapsis, D. Quinn, A. Vakakis, & L. Bergman, Effective stiffening and damping enhancement of structures with strongly nonlinear local attachmentsASME Journal of Vibration & Acoustics134 (2012) 011016 (12 pages). [pdf]

T. Sapsis, A. Vakakis, & L. Bergman, Effect of stochasticity on targeted energy transfer from a linear medium to a strongly nonlinear attachmentProbabilistic Engineering Mechanics26 (2011) 119-133. [pdf]

O. Gendelman, T. Sapsis, A. Vakakis, L. Bergman, Enhanced passive targeted energy transfer in strongly nonlinear mechanical oscillatorsJournal of Sound and Vibration330 (2011) 1-8. [pdf]

T. Sapsis & A. Vakakis, Subharmonic orbits of a strongly nonlinear oscillator forced by closely spaced harmonicsJournal of Computational and Nonlinear Dynamics6 (2011) 011014 (10 pages). [pdf]

T. Sapsis, A. Vakakis, O. Gendelman, L. Bergman, G. Kerschen, & D. Quinn. Efficiency of targeted energy transfers in coupled nonlinear oscillators associated with 1:1 resonance captures: Part II, analytical studyJournal of Sound and Vibration325 (2009) 297-320. [pdf]

D. Quinn, O. Gendelman, G. Kerschen, T. Sapsis, L. Bergman, & A. Vakakis. Efficiency of targeted energy transfers in coupled nonlinear oscillators associated with 1:1 resonance aaptures: Part IJournal of Sound and Vibration311 (2008) 1228-1248. [pdf]

Energy Harvesting

M. Haji, J. Kluger, T. Sapsis, A. Slocum, A symbiotic approach to the design of offshore wind turbines with other energy harvesting systemsOcean Engineering Journal169 (2018) 673-681. [pdf]

M. Haji, J. Kluger, J. Carrus, T. Sapsis, A. Slocum, Experimental investigation of hydrodynamic response of an ocean uranium extraction machine attached to a floating wind turbineInternational Journal of Offshore and Polar Engineering28 (2018) 225-231. [pdf]

H. -K. Joo, T. Sapsis, A moment-equation-copula-closure method for nonlinear vibrational systems subjected to correlated noiseProbabilistic Engineering Mechanics46 (2016) 120-132. [pdf]

J. Kluger, T. Sapsis, A. Slocum, Robust energy harvesting from walking vibrations by means of nonlinear cantilever beamsJournal of Sound and Vibration341 (2015) 174-194. [pdf]

H.-K. Joo, T. Sapsis, Performance measures for single-degree-of-freedom energy harvesters under stochastic excitationJournal of Sound and Vibration313 (2014) 4695-4710. [pdf]

K. Remick, H.-K. Joo, D.M. McFarland, T. Sapsis, L. Bergman, D.D. Quinn, A. Vakakis, Sustained high-frequency energy harvesting through a strongly nonlinear electromechanical system under single and repeated impulsive excitationsJournal of Sound and Vibration333 (2014) 3214-3235. [pdf]

K. Remick, A. Vakakis, L. Bergman, D. M. McFarland, D. D. Quinn, T. Sapsis, Sustained high-frequency dynamic instability of a nonlinear system of coupled oscillators forced by single or repeated impulses: Theoretical and experimental resultsASME Journal of Vibration & Acoustics136 (2013) 011013 (15 pages). [pdf]


Statistics of Extremes
Expositories-Reviews

T. Sapsis, Statistics of extreme events in fluid flows and waves, Annual Review of Fluid Mechanics, 53 (2021) 85-111. [free access pdf]

T. Sapsis, New perspectives for the prediction and statistical quantification of extreme events in high-dimensional dynamical systemsPhilosophical Transactions of the Royal Society A376 (2018) 20170133 (18 pages). [pdf]

Theory-Algoritms

H. Arbabi, T. Sapsis, Generative stochastic modeling of strongly nonlinear flows with non-Gaussian statistics, SIAM/ASA Journal of Uncertainty Quantification, 10 (2022) 555-583. [code][pdf]

Z. Wan, B. Dodov, C. Lessig, H. Dijkstra, T. Sapsis, A data-driven framework for the stochastic reconstruction of small-scale features with application to climate data sets, Journal of Computational Physics, 442 (2021) 110484 (24 pages). [movie] [pdf]

A. Blanchard, T. Sapsis, Output-weighted optimal sampling for Bayesian experimental design and rare-event quantificationSIAM/ASA Journal of Uncertainty Quantification, 9 (2021) 564-592. [code][pdf]

T. Sapsis, Output-weighted optimal sampling for Bayesian regression and rare event statistics using few samplesProceedings of the Royal Society A, 476 (2020) 20190834. [Code][pdf]

M. Mohamad, T. Sapsis, A sequential sampling strategy for extreme event statistics in nonlinear dynamical systemsProceedings of the National Academy of Sciences115 (2018) 11138-11143. [open access link], [supporting information], Featured on the MIT News

M. Mohamad, W. Cousins, T. Sapsis, A probabilistic decomposition-synthesis method for the quantification of rare events due to internal instabilitiesJournal of Computational Physics322 (2016) 288-308. [pdf]

M. Mohamad, T. Sapsis, Probabilistic description of extreme events in intermittently unstable dynamical systems excited by correlated stochastic processesSIAM/ASA Journal on Uncertainty Quantification3 (2015) 709-736. [pdf]

Applications

S. Guth, E. Katsidoniotaki, T. Sapsis, Statistical modeling of fully nonlinear hydrodynamic loads on offshore wind turbine foundations using wave episodes and targeted CFD simulations through active sampling (2023), Wind Energy, In Press (36 pages). [pdf].

S. Guth, T. Sapsis, Wave episode based Gaussian process regression for extreme event statistics in ship dynamics: Between the Scylla of Karhunen-Loève convergence and the Charybdis of transient features, Ocean Engineering Journal, 266 (2022) 112633 (18 pages). [pdf]

S. Guth, T. Sapsis, Probabilistic characterization of the effect of transient stochastic loads on the fatigue-crack nucleation timeProbabilistic Engineering Mechanics, 66 (2021) 103162 (11 pages). [Code][pdf]

V. Belenky, D. Glotzer, V. Pipiras, T. Sapsis, Distribution tail structure and extreme value analysis of constrained piecewise linear oscillatorsProbabilistic Engineering Mechanics, 57 (2019) 1-13.[pdf]

H. -K. Joo, M. Mohamad, T. Sapsis, Heavy-tailed response of structural systems subjected to extreme forcing eventsASME Journal of Computational and Nonlinear Dynamics, 13 (2018) 090914 (12 pages). [pdf]

H. -K. Joo, M. Mohamad, T. Sapsis, Extreme events and their optimal mitigation in nonlinear structural systems excited by stochastic loads: Application to ocean engineering systemsOcean Engineering Journal142 (2017) 145-160. [pdf]

M. Mohamad, T. Sapsis, Probabilistic response and rare events in Mathieu’s equation under correlated parametric excitationOcean Engineering Journal,120 (2016) 289-297. [pdf]


Reduced Order Modeling & Control of Transient Instabilities
Theory-Algorithms

A. Blanchard, T. Sapsis, Learning the tangent space of dynamical instabilities from dataChaos29 (2019) 113120, Focus Issue: When Machine Learning Meets Complex Systems: Networks, Chaos and Nonlinear Dynamics, (2019) (15 pages). [pdf]

A. Blanchard, T. Sapsis, Analytical description of optimally time-dependent modes for reduced-order modeling of transient instabilitiesSIAM Journal on Applied Dynamical Systems, 18 (2019) 1143-1162. [pdf]

H. Babaee, M. Farazmand, G. Haller, T. Sapsis, Reduced-order description of transient instabilities and computation of finite-time Lyapunov exponentsChaos27 (2017) 063103 (12 pages). [pdf]

H. Babaee, T. Sapsis, A minimization principle for the description of time-dependent modes associated with transient instabilitiesProceedings of the Royal Society A472 (2016) 20150779 (27 pages). [pdf] Featured on the journal’s cover page.

Applications

A. Blanchard, T. Sapsis, Stabilization of unsteady flows by reduced-order control with optimally time-dependent modesPhysical Review Fluids, 4 (2019) 053902 (27 pages). Editor’s Suggestion[pdf]

A. Blanchard, S. Mowlavi, T. Sapsis, Control of linear instabilities by dynamically consistent order reduction on optimally time-dependent modes, Nonlinear Dynamics95 (2019) 2745-2764. [pdf]


Stochastic Closures and Data-Driven Modeling for Dynamical Systems
Stochastic closures for uncertainty quantification

A. Charalampopoulos, T. Sapsis, Uncertainty quantification of turbulent systems via physically consistent and data-informed reduced-order models, Physics of Fluids, 34 (2022) 075120. [pdf]

A. Charalampopoulos, T. Sapsis, Machine-learning energy-preserving nonlocal closures for turbulent fluid flows and inertial tracers, Physical Review Fluids, 7 (2022) 024305 (24 pages). [pdf]

H. -K. Joo, T. Sapsis, A moment-equation-copula-closure method for nonlinear vibrational systems subjected to correlated noiseProbabilistic Engineering Mechanics46 (2016) 120-132. [pdf]

T. Sapsis, A. Majda, A statistically accurate modified quasilinar Gaussian closure for uncertainty quantification in turbulent dynamical systemsPhysica D252 (2013) 34-45. [pdf]

D. Venturi, T. Sapsis, H. Cho, and G. E. Karniadakis, A computable evolution equation for the joint response-excitation probability density function of stochastic dynamical systemsProceedings of the Royal Society A468 (2012) 759 (25 pages). [pdf]

T. Sapsis & G. Athanassoulis, New partial differential equations governing the response-excitation joint probability distributions of nonlinear systems under general stochastic excitationProbabilistic Engineering Mechanics23 (2008) 289-306. [pdf]

Data-driven modeling for prediction

A. Mentzelopoulos, J. Ferrandis, S. Rudy, T. Sapsis, M. Triantafyllou, D. Fan, Data-driven prediction and study of vortex induced vibrations by leveraging hydrodynamic coefficient databases learned from sparse sensors, Ocean Engineering Journal, 266 (2022) 112833 (12 pages). [pdf]

D. Eeltink, H. Branger, C. Luneau, Y. He, A. Chabchoub, J. Kasparian, T. S. van den Bremer, T. Sapsis, Nonlinear wave evolution with data-driven breaking, Nature Communications 13 (2022) 2343. [pdf]

S. Rudy, T. Sapsis, Prediction of intermittent fluctuations from surface pressure measurements on a turbulent airfoil, American Institute of Aeronautics and Astronautics (AIAA) Journal, 60 (2022) 4174-4190.[pdf]

S. Rudy, D. Fan, J. Ferrandis, T. Sapsis, M. Triantafyllou, Optimized parametric hydrodynamic databases provide accurate response predictions and describe the physics of vortex-induced vibrationsJournal of Fluids and Structures, 112 (2022) 103607.[pdf]

P. Vlachas, J. Pathak, B. R. Hunt, T. Sapsis, M. Girvan, E. Ott, P. Koumoutsakos, Forecasting of spatio-temporal chaotic dynamics with recurrent neural networks: a comparative study of reservoir computing and backpropagation algorithmsNeural Networks126 (2020) 191-217. [pdf]

Z. Y. Wan, P. Vlachas, P. Koumoutsakos, T. Sapsis, Data-assisted reduced-order modeling of extreme events in complex dynamical systemsPLOS One, 24 May (2018) (22 pages). [pdf]

P. Vlachas, W. Byeon, Z. Y. Wan, T. Sapsis, P. Koumoutsakos, Data-driven forecasting of high-dimensional chaotic systems with long-short term memory networksProceedings of the Royal Society A474 (2018) 20170844 (20 pages). [pdf]

Z. Y. Wan, T. Sapsis, Reduced-space Gaussian process regression for data-driven probabilistic forecast of chaotic dynamical systemsPhysica D345 (2017) 40-55. [pdf]


Bubbles and Particles in Fluid Flows
Theory-Algorithms

M. Farazmand, T. Sapsis, Surface waves enhance particle dispersionFluids, 4 (2019) (12 pages). [pdf]

Z. Y. Wan, T. Sapsis, Machine learning the kinematics of spherical particles in fluid flowsJournal of Fluid Mechanics857 (2018) R2 (11 pages). [Code][pdf]

T. Sapsis & G. Haller, Clustering criterion for inertial particles in 2D time-periodic and 3D steady flowsChaos20 (2010) 017515 (11 pages). [pdf]

G. Haller & T. Sapsis, Localized instability and attraction along invariant manifoldsSIAM Journal of Applied Dynamical Systems9 (2010) 611-633. [pdf]

T. Sapsis & G. Haller, Instabilities in the dynamics of neutrally buoyant particlesPhysics of Fluids20 (2008) 017102 (7 pages). [pdf]

G. Haller, T. Sapsis, Where do inertial particles go in fluid flows?Physica D237 (2008) 573-583. [pdf]

Applications

A. Charalampopoulos, S. H. Bryngelson, T. Colonius, T. Sapsis, Hybrid quadrature moment method for accurate and stable representation of non-Gaussian processes applied to bubble dynamics, Phil. Trans. Royal Soc. A, 380 (2022) 20210209 (19 pages). [pdf]

S. Atis, M. Leclair, T. Sapsis, T. Peacock, Anisotropic particles focusing effect in complex flows, Physical Review Fluids, 7 (2022) 084503 (12 pages). [pdf]

Z. Y. Wan, P. Karnakov, P. Koumoutsakos, T. Sapsis, Bubbles in turbulent flows: Data-driven, kinematic models with history termsInternational Journal of Multiphase Flows129 (2020) 103286 (11 pages). [pdf]

N. Aksamit, T. Sapsis, G. Haller, Machine-learning ocean dynamics from Lagrangian drifter trajectoriesJournal of Physical Oceanography50 (2020) 1179-1196. [pdf]

S. Bryngelson, A. Charalampopoulos, T. Sapsis, T. Colonius, A Gaussian moment method and its augmentation via LSTM recurrent neural networks for the statistics of cavitating bubble populationsInternational Journal of Multiphase Flows127 (2020) 103262 (8 pages). [pdf]

T. Sapsis, N. Ouellette, J. Gollub, & G. Haller, Neutrally buoyant particle dynamics in fluid flows: Comparison of Experiments with Lagrangian stochastic modelsPhysics of Fluids23 (2011) 093304 (15 pages). [pdf]

T. Sapsis, J. Peng, & G. Haller, Instabilities on prey dynamics in jellyfish feedingBulletin of Mathematical Biology73 (2011) 1841-1856. [pdf]

T. Sapsis & G. Haller, Inertial particle dynamics in a hurricaneJournal of the Atmospheric Sciences66 (2009) 2481-2492. [pdf]


Ship and Submarine Dynamics and Loads

B. Hammond, T. Sapsis, UUV autonomy and control near submarines using actively sampled surrogatesJournal of Ship Research, 67 (2023), 235-251  [pdf]

D. Glotzer, V. Pipiras, V. Belenky, K. Weems, T. Sapsis, Distributions and extreme value analysis of critical response rate and split-time metric in nonlinear oscillators with stochastic excitationOcean Engineering Journal, 292 (2024) 116538 (12 pages). [pdf]

M. Levine, S. Edwards, D. Howard, K. Weems, T. Sapsis, V. Pipiras, Multi-fidelity data-adaptive autonomous seakeepingOcean Engineering Journal, 292 (2024) 116322 (13 pages). [pdf]

V. Belenky, K. Weems, W.-M. Lin, V. Pipiras, T. Sapsis, Estimation of probability of capsizing with split-time methodOcean Engineering Journal, 292 (2024) 116452 (27 pages). [pdf]

B. Hammond, T. Sapsis, Reduced order modeling of hydrodynamic interactions between a submarine and unmanned underwater vehicle using non-myopic multi-fidelity active learningOcean Engineering Journal, 288 (2023) 116016. [pdf]

B. Campbell, V. Belenky, V. Pipiras, K. Weems, T. Sapsis, Estimation of probability of large roll angle with envelope peaks over threshold methodOcean Engineering Journal, 290 (2023), 116296 (16 pages). [pdf]

S. Guth, T. Sapsis, Wave episode based Gaussian process regression for extreme event statistics in ship dynamics: Between the Scylla of Karhunen-Loève convergence and the Charybdis of transient features, Ocean Engineering Journal, 266 (2022) 112633 (18 pages). [pdf]

A. Kriezis, C. Chryssostomidis, T. Sapsis, Predicting ship power using machine learning methods, Proceedings of the SNAME Maritime Convention 2022, Houston, Texas, (9 – 2022). [pdf]

M. D. Levine, S. J. Edwards, D. Howard, V. Belenky, K. Weems, T. Sapsis, and V. Pipiras, Data-adaptive autonomous seakeeping, Proceedings of the 34th Symposium on Naval Hydrodynamics Washington, DC, USA (6 – 2022). [pdf]

S. Guth, B. Champenois, T. Sapsis, Application of Gaussian process multi-fidelity optimal sampling to ship structural modeling, Proceedings of the 34th Symposium on Naval Hydrodynamics Washington, DC, USA (6 – 2022). [pdf]

T. Sapsis, V. Belenky, K. Weems, V. Pipiras, Deck effects on the statistical structure of the vertical bending moment loads during random waves: an analytical approach, Proceedings of the 34th Symposium on Naval Hydrodynamics Washington, DC, USA (6 – 2022). [pdf]

V. Pipiras, D. Howard, V. Belenky, K. Weems and T. Sapsis, Multi-Fidelity Uncertainty Quantification and Reduced-Order Modeling for Extreme Ship Motions and Loads, Proceedings of the 34th Symposium on Naval Hydrodynamics Washington, DC, USA (6 – 2022). [pdf]

V. Belenky, K. Weems, T. Sapsis, V. Pipiras, Influence of deck submergence events on extreme properties of wave-induced vertical bending moment, Proceedings of the 1st International Conference on the Stability and Safety of Ships and Ocean Vehicles, Glasgow, Scotland, UK (Virtual), (6-2021). [pdf]

S. Guth, T. Sapsis, A stochastically preluded Karhunen-Loève representation for recovering extreme statistics in ship dynamics, Proceedings of the 1st International Conference on the Stability and Safety of Ships and Ocean Vehicles, Glasgow, Scotland, UK (Virtual), (6-2021). [pdf]

T. Sapsis, V. Belenky, K. Weems, V. Pipiras, Extreme properties of impact-induced vertical bending moments, Proceedings of the 1st International Conference on the Stability and Safety of Ships and Ocean Vehicles, Glasgow, Scotland, UK (Virtual), (6-2021). [pdf]

T. Sapsis, V. Pipiras,  K. Weems, V. Belenky, On extreme value properties of vertical bending momentProceedings of the 33rd Symposium on Naval Hydrodynamics Osaka, Japan (Virtual) (10-2020). [pdf]

K. Weems, V. Belenky, B. Campbell, V. Pipiras, T. Sapsis, Envelope peaks over threshold application and verification, Proceedings of the 17th International Ship Stability Workshop, Helsinki, Finland (6-2019). [pdf]

V. Belenky, K. Weems, V. Pipiras, D. Glotzer, T. Sapsis, Tail structure of roll and metric of capsizing in irregular wavesProceedings of the 32nd Symposium on Naval Hydrodynamics (2018), Hamburg, Germany (8-2018). [pdf]

V. Belenky, K. Weems, K. Spyrou, V. Pipiras, T. Sapsis, Modeling Broaching-to and Capsizing with Extreme Value Theory, Proceedings of the 16th International Ship Stability Workshop, Belgrade, Serbia (6-2017).

V. Belenky, D. Glozter, V. Pipiras, T. P. Sapsis, On the tail of nonlinear roll motions, Proceedings of the 15th International Ship Stability Workshop, 13-15 June 2016, Stockholm, Sweden (6-2016). [pdf]