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ABSTRACT

We show how to reconstruct the vortex-induced vibrations of a riser from
experimental strain measurements using a machine learning framework.
We employ a modal decomposition technique followed by inference
of the expansion modes using a two-stage optimization routine. A
stochastic mode search algorithm is developed and its capabilities and
limitations are demonstrated using the MIAMI II riser field experiments,
conducted in the Gulf Stream off the coast of Miami, FL using a
densely instrumented riser model. Validation is done according to a
k-fold cross-validation scheme, and a VIV physics-based examination is
presented. The reconstruction framework’s complexity in terms of data
required for successful training is finally evaluated.

KEY WORDS: Flexible body vortex induced vibrations (VIV); marine
riser, unsupervised learning; optimization; optimal sparse modal expan-
sion; stochastic mode search; riser motion reconstruction

INTRODUCTION

Vortex induced vibrations (VIV) are driven by the periodic shedding of
vortices formed in the wake behind bluff bodies placed within currents
(Triantafyllou et al., 2016). The vibration amplitude does not typically
exceed one to two body diameters (Bernitsas et al., 2019). Rigid cylinder
VIV have become the canonical problem for study of the phenomenon
(Williamson and Roshko, 1988; Wu et al., 2014; Zdravkovich, 1996).
Flexible body VIV are similar to rigid body vibrations as they are driven
by vortex sheeding, but with the added complexity that the loading is
non-uniform along the span as the flexible body undergoes spatially
traveling and/or standing waves.

Riser motion reconstruction has been done by leveraging the physics-
based modal expansion technique (Mukundan, 2008; Triantafyllou
et al., 1999; Wang et al., 2019) developed to model vibrations of
continuous flexible bodies, such as beams (Rao, 1995). In this work, the
modal expansion approach is employed, followed by a data-informed
selection of the expansion modes to restrict the model’s complexity
while satisfying the motion constraints imposed by VIV physics. The
challenge is that a large number of parameters are involved in riser
modeling, a problem which is common within the field of regression and
has led to a variety of techniques for variable subset selection (Guyon
and Elisseeff, 2003). This framework is used to satisfy physics-based
VIV motion constraints (for example, amplitude restriction), while still
utilizing the modal decomposition model.

METHODS

Data Description
We outline the method using a comprehensive set of field data: The
MIAMI II experiments were high mode number VIV experiments
conducted in the Gulf Stream off the coast of Miami, FL in 2006. A
composite pipe of length L = 152.524 m and outer diameter D = 0.0363
m was used. The experimental setup is shown in Fig. 6.

The riser was equipped with strain measuring fibers providing strain
data at seventy locations along the span (uniformly spaced, excluding
the endpoints) every ∆z = 2.1335 m. Measurements were sampled at
50.4857 Hz. Details of the procedures as well as insights gained from
the experiments can be found in (Jaiswal and Vandiver, 2007; Jhingran
and Vandiver, 2007; Marcollo et al., 2007; Swithenbank and Vandiver,
2007). The data are open-sourced by Prof. Kim Vandiver of MIT and
can be accessed through the MIT VIV data repository. For this work,
cross-flow strain data collected from experiment No. 20061020164517
between times 50-60 s are used.

Amplitude Reconstruction
Modelling the flow induced motions

Consider a flexible riser of radius R and length L. For cross-flow VIV we
expect sinusoidal mode shapes with time varying amplitudes (Mukun-
dan, 2008). Accordingly those may be modelled by Equation 1.

y(z, t) = α0(t) +
∑
n∈S

[
αn(t) cos(

nπ
L

z) + βn(t) sin(
nπ
L

z)
]

(1)

where the contributing expansion modes are in set S , N+ and the coef-
ficients αn(t) and βn(t) are time dependent functions. We note that Equa-
tion 1 is one out of many choices for modelling VIV motions; for ex-
ample an expansion in terms of orthogonal polynomials could be consid-
ered. That would be especially recommended if excessive Gibbs over-
shooting is observed; other functions may be appropriate depending on
the riser properties and the VIV response. We note, for example, that
Equation 1 will have a finite number of terms, hence, even if the fre-
quency response is band-limited, accuracy depends on how well the sine
and cosine terms describe the response of the riser. For example, travel-
ing waves require a large number of terms, even when the frequency is
monochromatic. For simplicity, one may rewrite Equation 1 as follows.



y(z, t) = Re
[∑

n∈S

cn(t) exp (
inπ
L

z)
]

(2)

where i is the imaginary unit and the real symmetric set S = {−S∪{0}∪S}
replaces set S. For a riser with circular cross-section the strain in the CF
direction measured on the riser’s surface may be related to its curvature
as follows (Mukundan, 2008).

κ(z, t) =
εCF(z, t)

R
≈
∂2y(z, t)
∂z2 = Re

∑
n∈S

−(
nπ
L

)2cn(t) exp (
inπ
L

z)

 (3)

where εCF is the CF strain, R is the riser’s radius, and κ is the riser’s
curvature. Equation 3 may be used to determine riser motions given an
analytical expression for the strain or vice versa. In addition, it may be
used to formulate a system of linear equations to determine the coeffi-
cients cn(t) assuming the set S , N+ is known a priori and only partial
data (i.e. limited measurements) of the strain are available. The least
squares problem formulation is as follows.

cn(t0) = arg min
cn

{ zi=L∑
zi=0

{
Re

∑
n∈S

−(
nπ
L

)2cn exp (
inπ
L

zi)

 − εCF(zi, t0)
R

}2} (4)

where n ∈ S , N+.

Machine-learning the motions of VIV

Let the true riser VIV motions, i.e. the CF displacement as a function of
span and time, be

g(z, t) ∀z ∈ [0, L], t ∈ [0,T ] (5)

and for a single time instant t0 define G(z) := g(z, t0),∀z ∈ [0, L].
From equation 3 it follows that at an instance t0

d2G(z)
dz2 =

εCF(z, t0)
R

=⇒

∫
L

∣∣∣∣∣d2G(z)
dz2 −

εCF(z, t0)
R

∣∣∣∣∣dz = 0 (6)

and more generally since Equation 6 holds true for any t0 ∈ [0,T ]

∫
t

∫
L

∣∣∣∣∣∂2g(z, t)
∂z2 −

εCF(z, t)
R

∣∣∣∣∣dzdt = 0 (7)

for the the flexible riser undergoing VIV.

Let the function y(z, t) be used as a trial function to approximate g(z, t)
provided there are limited strain measurements in discrete time instances.
Let there be a total of T ”snapshots” of the riser represented by the dis-
crete time variable t ∈ {1, 2, ...,T }. Define Y(z) := y(z, t0) at time instance
t0. We begin by considering Equation 6 for a single time instance, say t0

without loss of generality. Ideally,

Y(z) = G(z) =⇒
∫

L

∣∣∣∣∣d2Y(z)
dz2 −

εCF(z, t0)
R

∣∣∣∣∣dz = 0 (8)

Equation 8 thus may be used to define and quantify the approximation
quality of Y(z) in terms of approximating the true motions G(z) at time
instance t0 by measuring the deviation of the integral expression from
zero. We note that we are interested in the magnitude of the deviation
only. Extending our approximation quality definition across all time in-
stances, an objective function measuring approximation quality for y(z, t)
in terms of approximating g(z, t) may be formulated as follows.

J(y = f (z, t)) =
∑

t

∫
L

∣∣∣∣∣∂2y(z, t)
∂z2 −

εCF(z, t)
R

∣∣∣∣∣dz (9)

According to Equation 9, the better the approximation quality, the closer
the value of the objective function to zero. We have thus posed the riser
motion reconstruction problem as an optimization for which we further
need to determine appropriate constraints. We note that Equation 9 is
general in the sense that it is applicable without making any assumptions
on the form of the trial function y(z, t); however, we underscore that
satisfying Equation 9 is not sufficient to optimally approximate the
riser’s VIV motions, we further need to satisfy VIV physics-based
constraints.

At this point, consider the VIV model illustrated in section ”Modelling
the flow induced motions”. In this case the trial function y(z, t) is defined
in Equation 2 and the function Y(z) assumes the form

Y(z) = y(z, t0) = Re
[∑

n∈S

cn(t0) exp (
inπ
L

z)
]

(10)

and represents the trial function at a single time instance, t0. We note that
learning the coefficients cn(t0) is a trivial ordinary least-squares (OLS)
problem which nonetheless must be repeated at every time instance t0 ∈

{1, 2, ...,T }. However, learning the expansion modes, i.e. the discrete set
S, is the problem of interest. Combining Equations 2 and 9 we obtain the
following objective which may be used to learn the set S, containing the
modes of the expansion.

J(S) =
∑

t

∫
L

∣∣∣∣∣Re

∑
n∈S

−(
nπ
L

)2cn(t) exp (
inπ
L

z)

 − εCF(z, t)
R

∣∣∣∣∣dz (11)

Equation 11 defines an objective which may be used to infer the un-
knowns of the trial function y(z, t) which assumes the form of Equation
2, subject to the constraint that the coefficients cn(t) are optimal (least
squares sense) at each time instance t0. A final remark is that both the
coefficients cn(t) and the set S are learned from the data; however we
note that the optimality of the coefficients cn(t) can only be defined after
a choice for the set S is made. In addition, the coefficients cn(t) are not
learned according to Equation 11 but are determined at each recorded
time instance by solving an OLS problem.

Regularization

For the purposes of our trial function a regularization term penalizing
high modes modes as well as restricting the number of modes selected
can be beneficial; the latter penalty is introduced to restrict the model’s
complexity. In this case the regularization may assume the following
form.

R
(
y(z, t;S)

)
= κ · |s| + λ · |S|, κ, λ ∈ R+ (12)

where the operator | · | indicates cardinality and the factors κ and λ are
chosen arbitrarily. The set s ⊂ S is a strict subset of S defined as follows.

s = {si ∈ S
∣∣∣ si > n, n ∈ S} (13)

where the number n > 0 is chosen arbitrarily.

Constraints

Constraints are imposed by the natural phenomenon’s physics. The ob-
vious constraint of y(z, t) are the boundary conditions (BCs) of the riser.
In the MIAMI II experiments, the top end was pinned while a clump



weight was placed at the bottom of the riser. The pinned BC at the top
was implemented as a hard constraint.

y(0, t) = 0 ∀t ∈ [0,T ] (14)

In addition, assuming the riser can be modelled as in (Triantafyllou et al.,
1999), a formulation similar to that of a beam with variable mass and
geometric properties, then the bending moments at the ends should be
zero (as well as the third derivative of the displacement). Thus,

∂2y(z, t)
∂z2

∣∣∣∣∣
z=0
=
∂2y(z, t)
∂z2

∣∣∣∣∣
z=L
=
∂3y(z, t)
∂z3

∣∣∣∣∣
z=L
= 0 ∀t ∈ [0,T ] (15)

The constraints posed by Equation 15 were implemented as soft con-
straints (by adding zeros as the strain boundary values). Finally, the
motions were restricted to approximately one diameter (Bernitsas et al.,
2019; Triantafyllou et al., 1999) .

|y(z, t)|
D

< 1.5 ∀z ∈ [0, L], t ∈ [0,T ] (16)

where D is the cylinder’s diameter. Lastly, given that the expected physi-
cal vibration mode was not exceeding 30, the expansion modes in S were
narrowed down to S ⊆ Ω, where Ω = {1, 2, 3, ..., 90}.

Optimization Routine
Optimizing the objective function (Equation 11 plus regularization) in
order to obtain the optimal set S is nontrivial. Essentially, the choice
of S fundamentally alters the nature of y(z, t) as defined in Equation 2
by governing the number of terms used. Formulating a gradient with
respect to the unknown parameters is not possible and in addition the
parameter space, i.e. cardinality of S is not fixed. To make maters worse,
the number of subsets of Ω are 2|Ω| = 290 which is inexhaustibly large.

A two stage stochastic search approach was employed to minimize the
objective. The method is similar to a random search which eventually
is informed of previous outcomes. In the first stage, the cardinality of
S was restricted (to some different value at each iteration) and the set
S was drawn uniformly at random from Ω. This stage was the ”space
exploration” stage. Mathematically,

N1 < |S| < N2, N1,N2 ∈ Ω

S← {si

∣∣∣(si = rand ∈ Ω
)
∧
(
si , s j ∀ i , j

)
}

(17)

where the notation rand means a number chosen uniformly at random
(i.e. rand ∼ U({N1,N1 + 1, ...,N2 − 1,N2}). Given the choice of S, the
optimal coefficients cn were determined at each time and the objective
function was evaluated. The set which yielded the lowest value of the
objective was then selected as the optimal in stage 1. We call this set S1.

The second stage served as a ”refinement” stage, in which the set
S1 was perturbed and the objective was evaluated. Perturbations
included the following: (i) a few modes were added or removed from
S, (ii) some or all of the modes in S were altered slightly. Mathemati-
cally, both procedures fall into the below operations or their combination.

S← S1 ∪ Sp, Sp = {si

∣∣∣si ∈ Ω\S1 ∧ |si − x j| < a , x j ∈ S1}

S← S1 ∪ Sp, Sp = {si

∣∣∣si ∈ Ω ∧ si < S1}

S← S1\Sp, Sp ⊂ S1

(18)

The final set which yielded the lowest value of the objective function
was then selected as the optimum. A pseudocode for the optimization
routine is included in Appendix A. We note that to ensure convergence
to a final set the algorithm was performed with 10 restarts.

RESULTS AND DISCUSSION

In this section we present the motion reconstructions and validate the
models obtained after applying our methodology to the experimental
data. We underscore that reconstruction of the motion using sequential
modes (i.e. S = {1, 2, 3, ...N}) was attempted and yielded unreasonably
high amplitudes even after removing low modes which are known to be
sensitive to noise (Mukundan et al., 2010). Equation 11 was necessary
to select and objectively compare between different mode choices while
satisfying VIV constraints.

Convergence and computational cost
Although the stochastic optimization algorithm lacks theoretical con-
vergence and global optimality guarantees, in practice convergence has
been always observed. Specifically, after performing the algorithm with
10 restarts and performing 20,000 iterations with the last 1,000 iterations
as the refinement stage, the returned set is the exact same for all 10 times.

Fig. 1 Objective function plotted against iteration.

A typical plot of the objective function plotted against iteration is shown
in Figure 1. We note that since the objective is not monotonically
decreasing with iteration number, the value of the objective was only
plotted if it was better than the previous best estimate. The first 19,000
iterations served as the exploration stage; we observe that the best set
found in the exploration stage was found typically in less than 5,000
iterations. Rapid improvement to the final optimum was observed in the
refinement stage (last 1,000 iterations).

The wall time required for the optimization algorithm to run is less than
one hour, with 10 restarts, using a local workstation machine.

Reconstructed motion
Having learned the optimal mode set and time varying coefficient
functions, we can reconstruct the motion of the riser using Equation 1.



The response of the riser as well as the average incident current profile
are shown in Figure 2.

Fig. 2 Reconstructed riser motions (top) with the average normal
incident current (bottom). The riser’s span is measured on
the x-axis while time is measured on the y-axis; the riser’s
displacement is highlighted as a contour plot on the plane,
normalized by the riser’s diameter. Any line parallel to the
x-axis shows a ”snapshot” of the riser in time. The riser is
observed vibrating at the ninth mode with a frequency of
about 2 Hz. A strong travelling wave response is recorded
with waves travelling from the bottom end of the riser to-
wards the top.

Figure 2 illustrates the riser’s vibrations in time. The riser’s span is
measured on the x-axis, time is measured on the y-axis, while the
displacement normalized by the riser’s diameter is highlighted on the
plane as a contour plot. The riser is observed vibrating in the ninth
mode with amplitude of approximately one diameter and not exceeding
approximately 1.5 diameters. A travelling wave response is evident with
waves propagating from the bottom end of the riser, where the incident
current was maximum, towards the top end of the riser, where the
current was minimum. The result remains sensible while conforming to
expected VIV physics-based constraints. The Strouhal frequency, which
equals the vibration frequency is approximately, fstrouhal ≈ 2 Hz.

Validation and Generalization
This section assesses quantitatively the validity of the obtained models
by comparing them to experimental measurements, as well as how well
the proposed methodology can generalize and perform on unseen data.

Root-mean-square motions

To validate the model, the root-mean-square (RMS) of the predicted
motion was compared with observations. The results obtained for the
RMS motion reconstruction and strain model predictions are shown in
Figure 3. The top sub-figure shows the RMS amplitude (normalized by
the diameter) as a function of span and the bottom sub-figure illustrates

the RMS measured strain from the experiments as well as the strain
reconstruction.

Fig. 3 RMS of riser’s displacement (top) and RMS of riser’s
strain (bottom) as functions of span. The displacement plot
shows a flexible body vibrating in the ninth mode. The
reconstructed strain shows reasonable agreement with the
measured values.

As is evident in Figure 3, the RMS displacement qualitatively agrees
with the RMS vibration of a flexible body oscillating in the ninth
mode (Rao, 1995). In addition, the reconstructed RMS strain values
approximate the measurements’ shape and magnitude to reasonable
accuracy.

Cross-validation

To assess how well the learned model generalizes, a five-fold cross
validation was performed. Specifically, 8 seconds of the total 10 seconds
of available data were used to train the model each time and testing
was done on the unseen two seconds. We include cross validation
plots for training for the first 8 seconds and testing on the final 2
seconds. Figure 4 illustrates the predicted RMS displacement (top) as
well as the reconstructed RMS strain (bottom). Besides experimental
strain measurements, two reconstructions are shown both for the strain
measurements and for the amplitudes; the solid blue line corresponds to
the partially trained model and the solid orange line corresponds to the
fully trained model.

As is evident in Figure 4, not only are both models reasonably accurate,
they are in addition consistent. The cross-validation performed suggests
that the model can generalize reasonably well.

Framework Complexity given the training data

Given the model’s cross-validation results, a meaningful question
to ask would be how large the dataset must be to train the model
using the proposed stochastic mode search algorithm successfully. In
order to answer this question, attempts were made to predict the full
dataset in time, while reducing the number of training points gradually.
Specifically, from the 10 seconds of data available (505 time steps), only
a percentage of the available data was selected uniformly across time to
train the model. Figure 5 illustrates results of the model after training
on only 10% of the available data (50 out of the 505 timesteps) sampled
uniformly across time.



Fig. 4 RMS motion (top) and RMS strain (bottom) as functions
of span. Reconstructions are shown of a model trained on
all available data (orange), and of a model trained on 80%
of available data (blue), which predicts unseen data.

As is evident in the figure, the results obtained by training on just a small
subset of the data, 10% of the available, is almost indistinguishable
from training on the full dataset. Not only does the algorithm perform
reasonably well across the unseen time steps but also the results are
very consistent with those obtained by training on the full dataset.
This result is expected since the response is mostly periodic and thus a
few representative samples should suffice for selecting the appropriate
modes.

Fig. 5 RMS motion (top) and RMS strain (bottom) as functions
of span. Reconstructions are shown of a model trained on
all available data (orange) and a model trained on just 10%
of available data (blue) sampled uniformly across time -
which predicts unseen data 90% of the time. Predictions
are reasonably accurate and consistent.

CONCLUSION

In this work, the VIV motions of a riser model were machine-learned
from experimental strain data. A modal decomposition technique
was augmented using machine-learning in order to infer a carefully
selected set of expansion modes extracted directly from experimental
data. The goal of the learning problem was to determine a sparse

mode set capable of reasonably accurately predicting the motions while
conforming to VIV physics-based constraints. The problem formulation
provides specific conditions quantifying the reconstruction accuracy
and demonstrates how the motions may be obtained by minimizing an
appropriate objective.

Solving the learning problem requires optimizing a non-convex,
non-smooth objective function with a variable number of unknown
parameters subject to various constraints both essential (boundary
conditions, amplitude modulation) and natural (generalized least squares
optimality). In order to optimize the objective, the authors propose a
stochastic mode search algorithm and demonstrate its capabilities and
limitations. The optimization routine’s convergence and computational
cost are examined.

The results are validated using a five-fold cross-validation scheme and
the framework’s complexity in terms of data required for successful
training is finally evaluated.
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ALGORITHMS

Algorithm 1 Stochastic Mode Search (J(S))

Sbest ← random set
Jbest ← +∞

for i = number of total iterations do
if i in exploration stage then
S← random set ⊆ Ω

else if i in refinement stage then
S← perturbation o f Sbest

end if

for t = recorded times do
cn(t)← arg min

cn

∑
zi

(Y′′(zi) −
εCF (zi,t)

R )2

end for

if J(S) < Jbest then
Jbest ← J(S)
Sbest ← S

end if
end for
return Sbest

EXPLANATORY FIGURES

Fig. 6 Depiction of experimental setup. The riser model was
towed behind vessel F.G. Walton Smith. This illustration
is not drawn to scale and is for visualization purposes only.
[provided by Prof. J.K. Vandiver, MIT]


