Print

Prediction of Extremes

Expositories-Reviews

  • M. Farazmand, T. Sapsis, Extreme events: mechanisms and prediction, ASME Applied Mechanics Reviews, 71 (2019) 050801. Received the Lloyd Hamilton Donnell Best Paper Award for 2020. [pdf]
  • T. Sapsis, New perspectives for the prediction and statistical quantification of extreme events in high-dimensional dynamical systemsPhilosophical Transactions of the Royal Society A376 (2018) 20170133 (18 pages). [pdf]
  • M. Farazmand, T. Sapsis, Physics-based probing and prediction of extreme eventsSIAM News51 (2018) 1. [link] [pdf]

Theory-Algorithms

  • A. Blanchard, T. Sapsis, Bayesian optimization with output-weighted importance sampling, Journal of Computational Physics, 425 (2021) 109901 (16 pages). [code][pdf]
  • S. Guth, T. Sapsis, Machine learning predictors of extreme events occurring in complex dynamical systems, Entropy, 21 (2019) 925 (18 pages). [Code] [pdf]
  • M. Farazmand, T. Sapsis, A variational approach to probing extreme events in turbulent dynamical systemsScience Advances3:e1701533 (2017) (7 pages). [pdf]
  • W. Cousins, T. Sapsis, Reduced order precursors of rare events in unidirectional nonlinear water waves, Journal of Fluid Mechanics790 (2016) 368-388. [pdf] Featured as MIT spotlight. Reported by The Economist.
  • W. Cousins, T. Sapsis, Quantification and prediction of extreme events in a one-dimensional nonlinear dispersive wave modelPhysica D, 280-281 (2014) 48-58. [pdf]

Applications

  • S. Rudy, T. Sapsis, Prediction of intermittent fluctuations from surface pressure measurements on a turbulent airfoilSubmitted (2021). [pdf]
  • P. Blonigan, M. Farazmand, T. Sapsis, Are extreme dissipation events predictable in turbulent fluid flows?Physical Review Fluids, 4 (2019) 044606 (21 pages). [pdf]
  • M. Farazmand, T. Sapsis, Closed-loop adaptive control of extreme events in a turbulent flowPhysical Review E, 100 (2019) 033110 (7 pages)[pdf]
  • W. Cousins, M. Onorato, A. Chabchoub, T. Sapsis, Predicting ocean rogue waves from point measurements: an experimental studyPhysical Review E, 99 (2019) 032201 (9 pages). [pdf]
  • Z. Y. Wan, P. Vlachas, P. Koumoutsakos, T. Sapsis, Data-assisted reduced-order modeling of extreme events in complex dynamical systemsPLOS One, 24 May (2018) (22 pages). [pdf]
  • M. Farazmand, T. Sapsis, Reduced-order prediction of rogue waves in two dimensional water wavesJournal of Computational Physics340 (2017) 418-434. [pdf]
  • M. Farazmand, T. Sapsis, Dynamical indicators for the prediction of bursting phenomena in high-dimensional systemsPhysical Review E94 (2016) 032212 (15 pages). [pdf] Featured on the Physical Review E: Kaleidoscope.
  • W. Cousins, T. Sapsis, The unsteady evolution of localized unidirectional deep water wave groupsPhysical Review E91 (2015) 063204 (5 pages). [pdf]