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The Orr–Sommerfeld equation in velocity–vorticity formulation is given by

∂v
∂t

= Lv, (3.3)

with boundary conditions
v =Dv= η= 0 at y = ±1, (3.4)

where L is a linear operator

L =
(

LOS 0
LC LSQ

)
, (3.5)

with

LOS = (D2 − k2)−1
[

1
Re

(D2 − k2)2 + iαD2U − iαU(D2 − k2)
]

,

LC = −iβDU,

LSQ = 1
Re

(D2 − k2) − iαDU,

and k =
√
α2 + β2 is the modulus of the wavevector and D = ∂/∂y. For the complete derivation of

the OS/SQ equations, we refer to [59].
For the choice of the inner product, we use the energy measure, which provides a physically

motivated norm that arises naturally from the OS/SQ equation [20]. The inner product is given
by

〈v1, v2〉E := 1
k2

∫ 1

−1
vH

1 Mv2 dy, (3.6)

where

M =
(

k2 − D2 0
0 1

)
, (3.7)

and ( )H denotes the complex conjugate. In the following, we consider a discrete representation of
the operator L ∈ C

n×n. Assuming a solution of the form

v = φ exp λt,

the initial value problem (3.3) transforms to an eigenvalue problem of the form

LΦ =ΦΛ,

where Λ= diag(λ1, λ2, . . . , λn) and Φ = {φ1|φ2| · · · |φn} are, respectively, the matrices of the
eigenvalues and the eigenvectors of L.

Orszag [60] showed that, for Re ≤ Rec � 5772.22, all eigenvalues of the operator L have negative
real parts and therefore any perturbation is asymptotically stable. However, even for Re<Rec, the
energy of a perturbation may experience significant transient growth. This is a direct consequence
of the non-normality of L. In this section, we look at the evolution of the OTD modes for the
OS/SQ operator. In particular, we consider a three-dimensional perturbation with α= 1 and β = 1
at Re = 5000, which corresponds to an asymptotically stable operator.

Since the dynamical system is linear, the linear tangent operator and L are identical. Thus, the
evolution equation for the OTD modes U = {u1, u2, . . . , ur} becomes

∂ui

∂t
= Lui − 〈Lui, uj〉Euj, ui =

(
vi
ηi

)
, i, j = 1, 2, . . . , r, (3.8)

with the boundary conditions

vi =Dvi = ηi = 0 at y = ±1, i = 1, 2, . . . , r. (3.9)

For space we use Chebyshev collocation discretization with 256 points, while for time
advancement we use the first-order implicit Euler method.
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(i) Initial condition

We initialize the OTD subspace such that its span encompasses the optimal initial condition: an
initial condition v0 that reaches the maximum possible amplification at a given time t = tmax. The
optimal initial condition can be formulated as [20]

G(tmax) = max
v0 �=0

‖v(tmax)‖2
E

‖v0‖2
E

= ‖ exp(Λtmax)‖2
E. (3.10)

The value of ‖ exp(Λtmax)‖2
E is equal to the principal singular value s1 of the propagator Φ

tmax
t0

=
exp(Ltmax). It follows that

Φ
tmax
t0

V0 = VS, (3.11)

where V(tmax) = {v1(tmax), . . . , vn(tmax)} are the right singular eigenvectors and V0 = {v10 , v20 , . . . ,
vn0} are the left singular eigenvectors, and S = diag{s1, s2, . . . , sn} consists of singular values of the
operator Φ

tmax
t0

. In the above expression, vi(tmax) corresponds to the state of the solution at t = tmax

with the corresponding initial condition of vi0 . The initial state of the subspace of size r is chosen
to be

ui0 = vi0 , i = 1, . . . , r.

The admissible initial conditions for the OTD modes must satisfy (i) the orthonormality constraint
and (ii) the boundary conditions at the walls given by equation (3.9). It is straightforward to
show that the above choice is compatible with these criteria. We also note that, short of these
criteria, the choice of initial conditions for the OTD subspace is arbitrary. Certainly, the choice of
optimal initial condition is of high practical importance, to which significant attention is paid
in the literature. We refer readers to [20] and references therein. Moreover, due to the non-
normality of the operator, the optimal initial condition requires a large number of eigenmodes
for accurate representation, resulting in a relatively high-dimensional system in eigenmode
coordinates compared with the OTD modes.

(ii) Transformation matrix

We obtain a time-dependent reduction of the OS/SQ operator by projecting L onto the OTD
subspace using the energy inner product

Lrij (t) = 〈ui, L(uj)〉E, i, j = 1, . . . , r, (3.12)

where Lr(t) ∈ C
r×r is the reduced OS/SQ operator. The reduced operator is then used to evolve the

transformation matrix T(t) ∈ C
r×r according to equation (2.36). Using the same initial condition V0

for both OTD modes and OS/SQ results in T0 being the identity matrix, i.e. T0 = I. In the following
section, we compare the evolution of V0 under the full OS/SQ operator with the evolution of V0
using the transformation relation V(t) = U(t)T(t).

(iii) Asymptotically stable subspace

We consider the evolution of the OTD subspace with r = 2 and r = 3 for three-dimensional
perturbations at Re = 5000 and streamwise and spanwise wavenumbers of α = 1 and β = 1. At
this Reynolds number, all perturbations are asymptotically stable, while some perturbations
experience significant non-normal growth in the short-time regime. In figure 4, the norm of
the solution operator, ‖eLt‖2

E, is shown. As can be seen, the energy of some initial conditions
is amplified by a factor of over 100. The maximum energy growth can be achieved at tmax =
25.06 for the optimal initial condition. The optimal initial condition is obtained from equation
(3.11). We initialize the two OTD modes with the first two elements of the right singular
eigenvectors V0.

Now, we first compare the evolution of the initial subspace with r = 2 using the reduced
operator with that of the full OS/SQ operator for the choice of initial condition explained in §3b(i).
In figure 4, we compare the energy of v1(t) and v2(t) obtained from (i) evolution of the OTD and
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Figure 4. Transient energy growth, G(t)= ‖v‖2E , for plane Poiseuille flow at Re= 5000 with α = 1 and β = 1. The solid
lines (blue and red) show the energy growth of two different initial perturbations computed with the reduced operator with
r = 2. The circles show the exact energy growth computed with the OS/SQ operator. (Online version in colour.)

using the transformation matrix T(t) to obtain vi(t) = uj(t)Tji(t), i, j = 1, . . . , r, and (ii) by solving
the full OS/SQ operator, i.e. vi(t) = Φt

0vi0 = eLtvi0 . In both cases, excellent agreement in both short-
time and long-time evolution is observed. This demonstrates that the OTD modes correctly follow
the evolution of a class of initial conditions according to theorem 2.4. Given that, at Re = 5000, the
OS/SQ operator is highly non-normal, a large number of eigenmodes are required to correctly
follow the evolution of an initial condition. However, the OTD modes do not require additional
modes beyond the dimension of the initial subspace.

In figure 5, the instantaneous eigenvalues for r = 2 along with numerical abscissa for r = 2
and r = 3 are shown. The black dashed lines show the real parts of the eigenvalues of the
OS/SQ operator. The eigenvalues shown are the four most unstable ones of the OS/SQ operator.
The significant non-normal energy growth manifests itself with positive real eigenvalues and
instantaneous growth rates in finite time, despite all eigenvalues of OS/SQ having negative real
parts. The instantaneous eigenvalues for the case with r = 2 converge to the first two least stable
eigenvalues of the OS/SQ operator in accordance with theorem 2.3. For r = 2, the largest real
instantaneous eigenvalue and the numerical abscissa σmax are nearly identical. This shows that
u1(t) is nearly aligned with the direction of maximum growth for all times.

Now we explore some aspects of increasing the dimension of OTD from r = 2 to r = 3. For the
sake of brevity, let us denote the quantities for the case r = 3 with the superscript ( )′. The initial
condition of the cases with r = 2 and r = 3 are V0 = {v10 , v20 } and V′

0 = {v10 , v20 , v30 }, respectively.
Clearly, V0 ⊂ V′

0 and consequently V(t) ⊂ V′(t) for all times. From the transformation between
U(t) and V(t), we can deduce that the embedding of the initial condition is preserved for the OTD
subspaces as well, i.e. U(t) ⊂ U′(t) for all times. Therefore, it is to be expected that the maximum
growth rate in the case of r = 3 must always be larger than (or equal to) the corresponding value in
the case of r = 2. In other words, σmax(t) ≤ σ ′

max(t) for all times. This observation is confirmed by
comparing the numerical abscissa for r = 2 and r = 3 as shown in figure 5. The abrupt changes in
the values of numerical abscissa are the result of eigenvalue crossing in the symmetric part of the
reduced operator Lr, where the direction of maximum growth switches from one eigendirection
to the other.

Figure 6 shows the OTD modes for the case of r = 2 at three time instants of their evolution
at the streamwise plane x = π : (i) the initial state t = 0, (ii) maximum energy t = tmax, and (iii) at
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Figure 5. Plane Poiseuille flow at Re= 5000, α= 1 and β = 1: instantaneous real eigenvalues with r = 2 (blue lines);
numerical abscissa with r = 2 (grey lines); numerical abscissa with r = 3 (red); the real part of the first four least stable
eigenvalues of the OS/SQ operator (dashed lines). (Online version in colour.)
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Figure 6. (a–f ) Snapshots of the OTDmodeswith r = 2 at Re= 5000 andα = 1 andβ = 1 in the streamwise plane x = π .
The contour shows the vertical velocity. (Online version in colour.)
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large time t = 300. The initial state is marked by flow patterns that oppose the base shear. As time
evolves from t = 0 to t< tmax, the OTD modes tilt into the mean shear flow, resulting in significant
growth rates for the subspace. At t = 300, the modes eventually approach the two most unstable
eigenmodes of the OS/SQ operator. This demonstrates that the time-dependent modes capture
characteristically different regimes in the evolution of the subspace.

4. Nonlinear dynamics
Here, we consider two nonlinear systems for which we compute the OTD modes. The first system
is a low-dimensional dynamical system, while the second one is a more complex application
involving an unstable flow with strongly transient characteristics.

(a) Low-dimensional dynamical system
We design a low-dimensional dynamical system in order to demonstrate transient growth over
different directions and how these can be captured by the developed approach. In particular, we
consider the following system:

dz1

dt
= −a1z1 + εz2 + bz3, (4.1)

dz2

dt
= ε−1z1 − a2z2 (4.2)

and
dz3

dt
= bz3

⎛
⎝ 1√

z2
1 + z2

2

− 1

⎞
⎠ , (4.3)

where we take a1 = a2 = 2, ε = 0.05 and b = 20. For these parameters, the dynamical system has
an almost periodic behaviour, where each cycle exhibits four distinct regimes: (1) a non-normal
growth in the z1 − z2 plane, (2) exponential decay in the z1 − z2 plane to the origin, (3) an
exponential growth in the z3 direction, and (4) an exponential decay in the z3 direction. In
figure 7a, we present the trajectory of the dynamical system coloured according to the variable
z3 in the three-dimensional phase space. The four regimes as described above can be observed.
We also present the projection of the vector field in the z3 = 0 plane, where the non-normal
structure can be seen as well. On the other hand, the singularity at z2

1 + z2
2 = 0 induces a severe

exponential growth when the state approaches this region. This configuration allows for the
repeated occurrence of non-normal and exponential instabilities.

We note that, due to the exponential instability close to the origin, the system undergoes
chaotic transitions between positive and negative values of z3. In figure 7b, we present a single
cycle together with a single OTD mode (orange vector) shown for different time instants, while the
time series for the state variables for one cycle is shown in figure 7c. The instantaneous growth rate
σ corresponding to the computed OTD mode is shown in figure 7d. We can clearly observe that
the OTD mode initially captures the severe exponential growth and subsequently captures the
non-normal growth. On the other hand, the eigenvalues of the full linearized operator can only
capture the exponential growth, even in regimes where it is not relevant, while they completely
miss the non-normal growth.

(b) Vertical jet in cross-flow
The jet in cross-flow is an important problem in fluid mechanics with a wide range of applications
from film cooling of gas turbines to pollutant dispersal from chimneys. The interplay of the jet
and cross-flow creates coupled vortical structures whose interactions are highly unsteady and
three dimensional, often leading to turbulence and resulting in a high-dimensional dynamical
system [61]. The stability of the jet in cross-flow has been recently studied in [62], where an
unstable base flow is computed by forcing the Navier–Stokes equation to an unstable steady
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Figure 7. (a) A trajectory of the considered dynamical system coloured according to the state variable z3. The non-normal vector
field for z3 = 0 is also shown. (b) A single cycle of the trajectory is shown together with a single OTD mode. (c) The time series
for zi(t), i = 1, 2, 3. (d) The three eigenvalues of the linearized operator are plotted with blue dashed curves, while the growth
rate of the single OTD mode is shown with orange colour. (Online version in colour.)

solution using the selective frequency damping method [63]. The Navier–Stokes equation is
then linearized around the base flow, and the global eigenmodes of the linearized Navier–Stokes
equation are then computed.

In this section, we compute the OTD modes for the vertical jet in cross-flow in a weakly
turbulent regime. In particular, we follow the short- and long-time evolution of the OTD subspace
with the time-dependent base flow, which is obtained by performing Direct Numerical Simulation
(DNS) of the incompressible Navier–Stokes equation.

(i) Problem specification

The problem set-up is analogous to several recent studies in the literature [62,64]. A two-
dimensional schematic of a vertical jet in cross-flow is shown in figure 8, where a vertical jet
is issued into the cross-flow. The characteristic length is the displacement thickness of the cross-
flow boundary layer. The origin of the coordinate system is placed at the centre of the jet exit with
the jet diameter D = 3δ∗. The computational domain spans from x = −9.375δ∗ to x = 55δ∗ in the
streamwise direction, from y = 0 to y = 50δ∗ in the wall-normal direction and from z = −15δ∗ to
z = 15δ∗ in the spanwise direction.

At the cross-flow inlet, the Blasius boundary layer profile with the displacement thickness of
δ∗ and free-stream velocity of U∞ is specified. The jet velocity profile is given by

vjet(r) = R(1 − r2) exp
(

−
( r

0.7

)4
)

, (4.4)

 on February 10, 2016http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


20

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20150779

...................................................

−5 0 5 10 15 20 25 30 35 40 45 50 55
0

5

10

15

20

25

x

y

Figure 8. Schematic of the vertical jet in cross-flow in the x–y plane. A snapshot of the base flow is visualized by the volume
rendering of the scalar field. (Online version in colour.)

where r is the normalized distance from the centre of the jet,

r = 2
√

x2 + z2/D,

and R = Vj/U∞ is the ratio of the peak jet velocity to the cross-flow velocity. The Reynolds number,
based on the cross-flow velocity U∞ and the displacement thickness, is given by Re∞ = U∞δ∗/ν,
while the jet Reynolds number is given by Rej = VjD/ν. We use a velocity ratio R = 3, and a
Reynolds number Re∞ = 100 or equivalently Rej = 900. At the top boundary, the free-stream
velocity Ub = {U∞, 0, 0} is imposed. In the spanwise direction, periodic boundary conditions are
used. At the outflow boundary, a zero-normal gradient is enforced for velocity components.

(ii) Optimally time-dependent equations for Navier–Stokes

To compute the time-dependent base flow, denoted by Ub := Ub(x, t), we solve the incompressible
Navier–Stokes equation given by

∂Ub

∂t
+ (Ub · ∇)Ub = −∇pb + 1

Re
∇2Ub (4.5)

and

∇ · Ub = 0, (4.6)

along with the boundary conditions described in this section. The evolution equation for the
modes is given by

∂ui

∂t
=LNS(ui) − 〈uj,LNS(ui)〉uj

and ∇ · ui = 0,

⎫⎪⎬
⎪⎭ (4.7)

where LNS is the linearized Navier–Stokes operator, given by

LNS(ui) = −(Ub · ∇)ui − (ui · ∇)Ub + 1
Re

∇2ui − ∇pi.

A zero boundary condition for ui, i = 1, . . . , r is enforced at the inflow, wall, jet exit and the top
boundaries. Periodic boundary conditions are used in the spanwise direction and at the outflow,
while zero-normal gradient is imposed on velocity components. In the above evolution equation,
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Figure 9. Instantaneous real eigenvalues and the numerical abscissa of the reduced operator (using the OTD modes), for the
jet in cross-flow at Rej = 900. (Online version in colour.)

the choice of the inner product is the second L2 norm in the complex space

〈u, v〉 =
∫
Ω

uxvx + uyvy + uzvz, (4.8)

where u = (ux, uy, uz) and v = (vx, vy, vz) are the velocity vector fields. The reduced linear operator
is therefore obtained from

Lrij (t) = 〈ui,LNS(uj)〉, i, j = 1, . . . , r. (4.9)

(iii) Initial conditions

The initial condition for the modes is obtained by an orthonormalized space spanned by {ui(x)}r
i=1

with ui(x) = (∂ψi/∂y, −∂ψi/∂x, 0), where the two-dimensional streamfunctions ψi are chosen as

ψi(x, y) = sin(2π fxi x) sin(2π fyi y)I(y), (4.10)

where fxi and fyi are the wavenumbers and I(y) is a smooth indicator function, localizing the
modes in the main body of the jet, i.e. between ys = 1.0 and ye = 6.0. More specifically, the indicator
function is given by

I(y) = tanh
(

(y − ys)
δ

)
− tanh

(
(y − ye)
δ

)
, (4.11)

with δ = 0.5. For the calculations that follow, we choose a four-dimensional OTD basis, i.e. r = 4.

(iv) Visualization

For the visualization of the base flow, we solve a passive scalar field θ that is governed by the
advection–diffusion equation given by

∂θ

∂t
+ (Ub · ∇)θ = 1

ReSc
∇2θ ,

where Sc is the Schmidt number and is chosen to be Sc = 1. The passive scalar is set to be θ = 1
at the cross-flow inlet, θ = 0 at the jet inlet, periodic condition at spanwise boundaries and zero
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Figure 10. Initial evolution of the first mode and the trajectory of the Navier–Stokes equations, starting from t = 0.4 with the
time advancement of�t = 0.4 time units. The mode is visualized by the iso-surface of the velocity magnitude equal to 0.03.
The time-dependent base flow (DNS) is visualized by smoke volume rendering of a scalar field. (Online version in colour.)

Neumann condition on all other boundaries. As such the jet body region is roughly determined
by

jet body = {x, such that 0 ≤ θ (x, t)< 1}.
Moreover, by volume rendering only selected levels of θ , the shear layer and vortical structures
can be revealed. In figure 8, the volume rendering of θ exposes the upper and lower shear layers
above the jet exit, and also vortical structures further downstream. For visualizing the OTD
modes, the iso-surface of the magnitude of velocity of the ranked OTD modes Ui, coloured by
the scalar field, is shown.

(v) Numerical algorithm

We use a spectral/hp element method to perform DNS of the full Navier–Stokes equation and the
evolution equation for the OTD basis. The details of the spectral/hp element solver (NEKTAR) can
be found in [65]. We use an unstructured hexahedral mesh with 99 792 elements with a spectral
polynomial of order 4. For time integration, we use the splitting scheme with the first-order
explicit Euler method with time increments of �t = 4 × 10−3. The Navier–Stokes equations are
first advanced for 200 time units, by which time the nonlinear dynamical system has reached
a statistical steady state. Due to the inherent similarities of the evolution equations of the OTD
basis to the nonlinear Navier–Stokes equation, the computational cost of solving a system of r
OTD modes is roughly equal to r times of a single DNS run. Since the base flow is also solved
along with the OTD modes, the total computational cost is (r + 1) times of a single DNS run.

(vi) Non-normality and transient growth

In figure 9, the instantaneous real eigenvalues and the numerical abscissa of the reduced operator
are shown. The large disparity between the numerical abscissa and the largest real eigenvalue
of the reduced operator exposes a large degree of non-normality in the reduced operator Lr. The
subspace experiences significant non-normal growth initially for 0< t< 20. This observation is
qualitatively in accordance with the linear stability analysis of the jet in cross-flow in [62]. We
refer the reader to fig. 3c in that article, in which the initial growth rate of the perturbation is
much larger than its asymptotic behaviour.

The snapshots of the initial evolution of the first mode, i.e. the most unstable mode, are shown
in figure 10. The mode is visualized by the iso-surface of the velocity magnitude equal to 0.03. At
t = 0.4, the mode clearly captures both the lower and upper shear layers. As time advances, the
presence of the upper shear layer becomes more pronounced. This is evident in the snapshots in
the second row in figure 10. It should be remembered that the norm of each mode remains 1 for
all times and, as a result, the mode quickly vanishes outside the jet body, where the magnitude of
U1(x, t) is significantly smaller than the values in the shear layer regions.
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Figure 11. Snapshots of the OTD modes Ui(x, t) and the trajectory of the Navier–Stokes equations. Each row shows all four
modes at a given time, with the first row taken at t = 130. Time advancement from one row to the next is�t = 2 time units.
The modes are visualized by the iso-surface of the velocity magnitude equal to 0.02. The time-dependent base flow (DNS) is
visualized by smoke volume rendering of a scalar field. (Online version in colour.)

(vii) Long-time behaviour

As time progresses, the subspace exhibits bursts of growth and sudden excursions into stable
directions, as can be seen in figure 9. At each time instant at least one or more unstable directions
can be observed. These unstable directions appear either singly (real eigenvalues) or in pairs
(complex conjugate eigenvalues). The unstable directions represent persistent instabilities that are
the hallmark of shear flows.

In figure 11, the snapshots of all four modes along with the smoke volume rendering of the
Navier–Stokes equation are shown. The modes are visualized by iso-surfaces of the velocity
magnitude (equal to 0.02) and coloured by the scalar field θ . Each column tracks one mode at
different time instants, starting from the top row at t = 120, with the time advancement of �t = 2
to the next row. The modes are sorted from the most unstable directions (mode 1) to the most
stable directions (mode 4). The first mode captures the vortex sheet in the upper shear layer of the
jet. This reaffirms the strong evidence that the jet upper shear layer is unstable, leading to the
vortex roll-up further downstream [62]. The second and the third modes show strong presence
in both the upper and lower shear layers, while the fourth mode captures the dominant vortical
structures downstream.
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The shear layer, spanned by the OTD subspace, is a critical dynamical feature since it is
associated with the ‘birth place’ of the instability. The strong presence of the upper and lower
shear layers in the large times exposes the important role of non-normality even in the asymptotic
dynamics of this flow. Moreover, the upper shear layer remains almost steady and as such it
has negligible turbulent kinetic energy. Therefore, in energy-based reduction techniques such
as proper orthogonal decomposition, the shear layer appears strongly in the time-averaged
fields, and only weakly with modes with which unstable directions are associated. A more
comprehensive analysis of the origin of the modes and their connection with coherent structures
is currently in progress.

5. Conclusion
We have introduced a minimization formulation for the extraction of a finite-dimensional, time-
dependent, orthonormal basis, which captures directions of the phase space associated with
transient instabilities. The central idea is to build a set of OTD modes with a rate of change that
optimally spans the vector field of the full dynamical system, in the neighbourhood of its current
state. We demonstrated how the formulated minimization principle can be used to produce
evolution equations for these time-dependent modes. These equations require a trajectory of the
system as well as the linearized operator and their solution gives a time-dependent orthonormal
basis which spans the current directions (i.e. for the current state of the system) associated with
maximum growth. For the special case of equilibrium states, we have shown that these modes
rapidly converge to the most unstable directions of the system.

We have demonstrated the capability of the approach in capturing instabilities caused by
linear dynamics such as non-normal effects as well as nonlinear exchanges of energy between
modes. In particular, we have illustrated the computation of the OTD modes in order to capture
energy growth/exchanges occurring in: (i) linear systems including the advection–diffusion
operator in a strongly non-normal regime as well as the Orr–Sommerfeld/Squire operator
and (ii) nonlinear systems including a low-dimensional system with both non-normal and
exponential growth regimes, and the vertical jet in cross-flow in an unstable regime. For the linear
systems, we demonstrated that the time-dependent subspace captures the strongly transient non-
normal energy growth (in the short-time regime), while for longer times the modes capture the
expected asymptotic behaviour of the dynamics. For the low-dimensional nonlinear system, we
demonstrated how the subspace captures the most unstable directions of the dynamics, associated
with exponential or non-normal growth, while for the fluid flow example we also explored the
connection between the shear flow, non-normal growth and persistent instabilities.

The proposed approach paves the way for (i) the formulation of efficient, reduced-order
filtering and prediction schemes for a variety of infinite dimensional problems involving strongly
transient features, such as rare events, and (ii) the formulation of low-energy control algorithms
that will be able to suppress the instability at a very early stage by applying reduced-order control
methods the moment that the instability has begun to emerge. The proposed framework should
also be important for the fundamental understanding of the dynamical processes behind transient
features, through the computation of finite-time Lyapunov exponents (a task that is not feasible
in an infinite dimensional setting) and the analysis of the associated energy transfers. Additional
conditions or constraints on the definition of the OTD modes, such as minimal or low torsion of
the modes, may be considered and this is part of future work.
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23. Susuki Y, Mezić I. 2012 Nonlinear Koopman modes and a precursor to power system swing
instabilities. IEEE Trans. Power Syst. 27, 1182–1191. (doi:10.1109/TPWRS.2012.2183625)

24. Cousins W, Sapsis TP. 2014 Quantification and prediction of extreme events in a
one-dimensional nonlinear dispersive wave model. Physica D 280, 48–58. (doi:10.1016/
j.physd.2014.04.012)

25. Pastoor M, Henning L, Noack BR, King R, Tadmor G. 2008 Feedback shear layer control for
bluff body drag reduction. J. Fluid Mech. 608, 161–196.

26. Tadmor G, Lehmann O, Noack BR, Cordier L, Delville J, Bonnet JP, Morzynski M. 2011
Reduced order models for closed-loop wake control. Phil. Trans. R. Soc. A 369, 1513–1524.
(doi:10.1098/rsta.2010.0367)

27. Cornelius SP, Kath WL, Motter AE. 2013 Realistic control of network dynamics. Nat. Commun.
4, 1942. (doi:10.1038/ncomms2939)

28. Böberg L, Brösa U. 1988 Onset of turbulence in a pipe. Z. Nat. A. 43a, 697–726. (doi:10.1515/
zna-1988-8-901)

29. Butler KM, Farrell BF. 1992 Three dimensional optimal perturbations in viscous shear flow.
Phys. Fluids A 4, 1637–1650. (doi:10.1063/1.858386)

30. Trefethen LN, Trefethen AE, Reddy SC, Driscoll TA. 1993 Hydrodynamic stability without
eigenvalues. Science 261, 578–584. (doi:10.1126/science.261.5121.578)

31. Trefethen LN. 1997 Pseudospectra of linear operators. SIAM Rev. 39, 383–406. (doi:10.1137/
S0036144595295284)

32. Reddy SC, Schmid PJ, Henningson DS. 1993 Pseudospectra of the Orr-Sommerfeld operator.
SIAM J. Appl. Math. 53, 15–47. (doi:10.1137/0153002)

33. Schmid PJ. 2000 Linear stability theory and bypass transition in shear flows. Phys. Fluids 7,
1788–1794. (doi:10.1063/1.874049)

34. Grossmann S. 2000 The onset of shear flow turbulence. Rev. Mod. Phys. 72, 603–618.
(doi:10.1103/RevModPhys.72.603)

35. Henningson DS, Lundbladh A, Johansson AV. 1993 A mechanism for bypass transition from
localized disturbances in wall-bounded shear flows. J. Fluid Mech. 250, 169–207. (doi:10.1017/
S0022112093001429)

36. Moxey D, Barkley D. 2010 Distinct large-scale turbulent-laminar states in transitional pipe
flow. Proc. Natl Acad. Sci. USA 107, 8091–8096. (doi:10.1073/pnas.0909560107)

37. Avila K, Moxey D, Alberto LD, Avila M, Barkley D, Hof B. 2011 The onset of turbulence in
pipe flow. Science 333, 192–196. (doi:10.1126/science.1203223)

38. Egolf DA, Melnikov IV, Pesch W, Ecke RE. 2000 Mechanisms of extensive spatiotemporal
chaos in Rayleigh–Bénard convection. Nature 404, 733–736. (doi:10.1038/35008013)

39. Majda AJ, Branicki M. 2012 Lessons in uncertainty quantification for turbulent dynamical
systems. Discret. Contin. Dyn. Syst. 32, 3133–3221. (doi:10.3934/dcds.2012.32.3133)

40. Branicki M, Majda AJ. 2012 Quantifying uncertainty for predictions with model error in
non-Gaussian systems with intermittency. Nonlinearity 25, 2543. (doi:10.1088/0951-7715/
25/9/2543)

41. Majda AJ, Harlim J. 2012 Filtering complex turbulent systems. Cambridge, UK: Cambridge
University Press.

42. Bourlioux A, Majda AJ. 2002 Elementary models with probability distribution function
intermittency for passive scalars with a mean gradient. Phys. Fluids 14, 881–897.
(doi:10.1063/1.1430736)

43. Bourlioux A, Majda AJ, Volkov O. 2006 Conditional statistics for a passive scalar with a mean
gradient and intermittency. Phys. Fluids 18, 1–10. (doi:10.1063/1.2353880)

44. Tong X, Majda AJ. 2015 Intermittency in turbulent diffusion models with a mean gradient.
Nonlinearity 28, 4171–4208. (doi:10.1088/0951-7715/28/11/4171)

45. Sapsis TP, Lermusiaux PFJ. 2009 Dynamically orthogonal field equations for continuous
stochastic dynamical systems. Physica D 238, 2347–2360. (doi:10.1016/j.physd.2009.09.017)

46. Sapsis TP, Lermusiaux PFJ. 2012 Dynamical criteria for the evolution of the stochastic
dimensionality in flows with uncertainty. Physica D 241, 60. (doi:10.1016/j.physd.2011.10.001)

47. Cheng M, Hou T, Zhang Z. 2013 A dynamically bi-orthogonal method for time-dependent
stochastic PDEs I: derivation and algortihms. J. Comput. Phys. 242, 843–868. (doi:10.1016/j.
jcp.2013.02.033)

48. Sapsis TP. 2013 Attractor local dimensionality, nonlinear energy transfers, and finite-time
instabilities in unstable dynamical systems with applications to 2D fluid flows. Proc. R. Soc. A
469, 20120550. (doi:10.1098/rspa.2012.0550)

 on February 10, 2016http://rspa.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1109/TPWRS.2012.2183625
http://dx.doi.org/doi:10.1016/j.physd.2014.04.012
http://dx.doi.org/doi:10.1016/j.physd.2014.04.012
http://dx.doi.org/doi:10.1098/rsta.2010.0367
http://dx.doi.org/doi:10.1038/ncomms2939
http://dx.doi.org/doi:10.1515/zna-1988-8-901
http://dx.doi.org/doi:10.1515/zna-1988-8-901
http://dx.doi.org/doi:10.1063/1.858386
http://dx.doi.org/doi:10.1126/science.261.5121.578
http://dx.doi.org/doi:10.1137/S0036144595295284
http://dx.doi.org/doi:10.1137/S0036144595295284
http://dx.doi.org/doi:10.1137/0153002
http://dx.doi.org/doi:10.1063/1.874049
http://dx.doi.org/doi:10.1103/RevModPhys.72.603
http://dx.doi.org/doi:10.1017/S0022112093001429
http://dx.doi.org/doi:10.1017/S0022112093001429
http://dx.doi.org/doi:10.1073/pnas.0909560107
http://dx.doi.org/doi:10.1126/science.1203223
http://dx.doi.org/doi:10.1038/35008013
http://dx.doi.org/doi:10.3934/dcds.2012.32.3133
http://dx.doi.org/doi:10.1088/0951-7715/25/9/2543
http://dx.doi.org/doi:10.1088/0951-7715/25/9/2543
http://dx.doi.org/doi:10.1063/1.1430736
http://dx.doi.org/doi:10.1063/1.2353880
http://dx.doi.org/doi:10.1088/0951-7715/28/11/4171
http://dx.doi.org/doi:10.1016/j.physd.2009.09.017
http://dx.doi.org/doi:10.1016/j.physd.2011.10.001
http://dx.doi.org/doi:10.1016/j.jcp.2013.02.033
http://dx.doi.org/doi:10.1016/j.jcp.2013.02.033
http://dx.doi.org/doi:10.1098/rspa.2012.0550
http://rspa.royalsocietypublishing.org/


27

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20150779

...................................................

49. Sapsis TP, Dijkstra HA. 2013 Interaction of noise and nonlinear dynamics in the double-gyre
wind-driven ocean circulation. J. Phys. Oceanogr. 43, 366–381. (doi:10.1175/JPO-D-12-047.1)

50. Sapsis TP, Ueckermann MP, Lermusiaux PFJ. 2013 Global analysis of Navier–Stokes and
Boussinesq stochastic flows using dynamical orthogonality. J. Fluid Mech. 734, 83–113.
(doi:10.1017/jfm.2013.458)

51. Sapsis TP, Majda AJ. 2013 A statistically accurate modified quasilinear Gaussian closure for
uncertainty quantification in turbulent dynamical systems. Physica D 252, 34–45. (doi:10.1016/
j.physd.2013.02.009)

52. Sapsis TP, Majda AJ. 2013 Blended reduced subspace algorithms for uncertainty
quantification of quadratic systems with a stable mean state. Physica D 258, 61. (doi:10.1016/
j.physd.2013.05.004)

53. Majda AJ, Qi D, Sapsis TP. 2014 Blended particle filters for large-dimensional chaotic
dynamical systems. Proc. Natl Acad. Sci. USA 111, 7511–7516. (doi:10.1073/pnas.1405675111)

54. Sapsis TP, Majda AJ. 2013 Statistically accurate low-order models for uncertainty
quantification in turbulent dynamical systems. Proc. Natl Acad. Sci. USA 110, 13 705–13 710.
(doi:10.1073/pnas.1313065110)

55. Sapsis TP, Majda AJ. 2013 Blending modified Gaussian closure and non-Gaussian reduced
subspace methods for turbulent dynamical systems. J. Nonlinear Sci. 23, 1039–1071. (doi:10.
1007/s00332-013-9178-1)

56. Qi D, Majda AJ. 2015 Blended particle methods with adaptive subspaces for filtering turbulent
dynamical systems. Physica D 299, 21–41. (doi:10.1016/j.physd.2015.02.002)

57. Farrell BF, Ioannou PJ. 1996 Generalized stability theory. Part II: non-autonomous operators.
J. Atmos. Sci. 53, 2041–2053. (doi:10.1175/1520-0469(1996)053<2041:GSTPIN>2.0.CO;2)

58. Driscoll TA, Hale N, Trefethen LN 2014 Chebfun guide: technical report. Oxford, UK: Pafnuty
Publications.

59. Schmid PJ, Henningson DS. 2001 Stability and transition stability in shear flows. New York, NY:
Springer.

60. Orszag SA. 1971 Accurate solution of the Orr-Sommerfeld stability equation. J. Fluid Mech. 50,
689–703. (doi:10.1017/S0022112071002842)

61. Babaee H. 2013 Analysis and optimization of film cooling effectiveness. PhD thesis, Louisiana
State University, Baton Rouge, LA, USA.

62. Bagheri S, Schlatter P, Schmid PJ, Henningson DS. 2009 Global stability of a jet in crossflow. J.
Fluid Mech. 624, 33–44. (doi:10.1017/S0022112009006053)

63. Åkervik E, Brandt L, Henningson DS, Hœpffner J, Marxen O, Schlatter P. 2006 Steady
solutions of the Navier–Stokes equations by selective frequency damping. Phys. Fluids 18,
068102. (doi:10.1063/1.2211705)

64. Babaee H. 2013 Uncertainty quantification of film cooling effectiveness in gas turbines.
Master’s thesis, Louisiana State University, Baton Rouge, LA, USA.

65. Karniadakis GE, Sherwin SJ. 2005 Spectral/hp element methods for computational fluid dynamics.
New York, NY: Oxford University Press.

 on February 10, 2016http://rspa.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1175/JPO-D-12-047.1
http://dx.doi.org/doi:10.1017/jfm.2013.458
http://dx.doi.org/doi:10.1016/j.physd.2013.02.009
http://dx.doi.org/doi:10.1016/j.physd.2013.02.009
http://dx.doi.org/doi:10.1016/j.physd.2013.05.004
http://dx.doi.org/doi:10.1016/j.physd.2013.05.004
http://dx.doi.org/doi:10.1073/pnas.1405675111
http://dx.doi.org/doi:10.1073/pnas.1313065110
http://dx.doi.org/doi:10.1007/s00332-013-9178-1
http://dx.doi.org/doi:10.1007/s00332-013-9178-1
http://dx.doi.org/doi:10.1016/j.physd.2015.02.002
http://dx.doi.org/doi:10.1175/1520-0469(1996)053$<$2041:GSTPIN$>$2.0.CO;2
http://dx.doi.org/doi:10.1017/S0022112071002842
http://dx.doi.org/doi:10.1017/S0022112009006053
http://dx.doi.org/doi:10.1063/1.2211705
http://rspa.royalsocietypublishing.org/

