
Physica D 238 (2009) 2347–2360

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

Dynamically orthogonal field equations for continuous stochastic
dynamical systems

Themistoklis P. Sapsis ∗, Pierre F.J. Lermusiaux 1

Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139, USA

a r t i c l e i n f o

Article history:
Received 5 June 2009
Received in revised form
12 September 2009
Accepted 16 September 2009
Available online 24 September 2009
Communicated by M. Vergassola

Keywords:
Random fields
Polynomial chaos
Proper orthogonal decomposition
Stochastic Navier–Stokes
Error subspace
Data assimilation
Ocean modeling

a b s t r a c t

In this work we derive an exact, closed set of evolution equations for general continuous stochastic fields
described by a Stochastic Partial Differential Equation (SPDE). By hypothesizing a decomposition of the
solution field into a mean and stochastic dynamical component, we derive a system of field equations
consisting of a Partial Differential Equation (PDE) for the mean field, a family of PDEs for the orthonormal
basis that describe the stochastic subspace where the stochasticity ‘lives’ as well as a system of Stochastic
Differential Equations that defines how the stochasticity evolves in the time varying stochastic subspace.
These new evolution equations are derived directly from the original SPDE, using nothing more than
a dynamically orthogonal condition on the representation of the solution. If additional restrictions are
assumed on the form of the representation, we recover both the Proper Orthogonal Decomposition
equations and the generalized Polynomial Chaos equations. We apply this novel methodology to two
cases of two-dimensional viscous fluid flows described by the Navier–Stokes equations and we compare
our results with Monte Carlo simulations.

Published by Elsevier B.V.

1. Introduction

In the past decades an increasing number of problems in con-
tinuum theory have been treated using stochastic dynamical the-
ories. Such problems are mainly described by stochastic partial
differential equations (SPDEs) and they arise in a number of areas
including fluid mechanics, elasticity, and wave theory to describe
phenomena such as turbulence [1–5], random vibrations [6–8],
flow through porous media [9,10], and wave propagation through
random media [11–13]. This is but a partial listing of applications
and it is clear that almost any phenomenon described by a field
equation has an important subclass of problems that may prof-
itably be treated from a stochastic point of view. This includes
problems for which the dynamics is not fully resolved or not suf-
ficiently known to warrant solely a deterministic approach as well
as problems for which initial, boundary or parametric uncertain-
ties are significant.
A basic goal of uncertainty quantification is to estimate joint

probability distributions for the field variables, given the proba-
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bilistic information for the initial state and forcing of the system as
well as for the SPDE random coefficients. A complete probabilistic
description of the response would either require the knowledge of
the response characteristic functional or equivalently the knowl-
edge of the whole Kolmogorov hierarchy of the joint probability
distributions of the response stochastic fields at any collection of
time instances and spatial locations [9,14]. Given the SPDE that
governs the system, it was first shown by Hopf [15] that for the
stochastic Navier–Stokes equations, a functional differential equa-
tion can be derived that governs the characteristic functional for
the response. His approach was later adapted to the problems of
stochasticwave propagation by Tatarskii [16] and Lee [17]. This ap-
proach, known as the statistical approach to turbulence, has also
been developed further by many authors (see, e.g., [18–20]) and
provides us with infinite-dimensional transport equations for the
characteristic functional that characterizes the stochastic solution.
Even though these functional equations contain the full probabilis-
tic information for the dynamical system and their derivation from
the SPDE is straightforward [9], their infinite-dimensional charac-
ter prevents a feasible method of solution.
The Monte Carlo simulation technique is a more practical me-

thod that can be readily applied to solve such problems to an
arbitrary degree of accuracy, provided a sufficiently large number
of samples is used. During the past years significant advances have
been made in improving the efficiency of Monte Carlo schemes.
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This includes new sequential Monte Carlo methods (e.g. particle
filters, see e.g. [21]) where the probability density function of
the response is approximated by a mixture of weighted Dirac
functions. A most recent development is the usage of a mixture of
weighted Gaussian kernels instead of Dirac functions to provide a
more reliable representation of the response pdf [22,23]. In recent
years, such particle filters and their variants have been applied
to stochastic estimations in various fields including ocean and
atmosphere dynamics [24] and structural dynamics [25].
Another approach is based on the generation and evolution of

an optimal set of input samples of reduced dimensionality such
that the scales and dynamical processes where the dominant,
most energetic, uncertainties occur are continuously spanned.
This is motivated by the multi-scale, intermittent, non-stationary
and non-homogeneous uncertainty fields for ocean dynamics
(e.g. [26]). The methodology, referred to as Error Subspace Statis-
tical Estimation (ESSE) [27–30], uses a Karhunen–Loeve (KL) ex-
pansion but with time varying and adaptive basis functions. The
functions are evolved using stochastic, data-assimilative, ensem-
ble predictions initialized by a multi-scale scheme and evolved
through a Monte Carlo approach. Similar ideas have been later ap-
plied to the modeling of diffusion processes in random heteroge-
neousmedia [31,32]. Thesemethods approximate the response pdf
without making any explicit assumption about its form and can
thus be used in general nonlinear, non-Gaussian systems. How-
ever, a major issue is that the evolution of the dominant uncertain-
ties is through aMonte Carlo scheme and therefore a larger number
of samples can still be required for accurate prediction.
Order reduction methods have also been utilized to derive re-

duced order models which have lower complexity relative to the
original SPDE model and which reveal the underlying structure
of the system dynamics. A classical approach is the statistical
technique of Karhunen–Loeve expansion or Proper Orthogonal
Decomposition (POD) (see [33–35]) where the response of the
dynamical system is usually assumed to have the form

u(x, t;ω) =
s∑
i=1

Xi(t;ω)ui(x), ω ∈ Ω (1)

where Xi(t;ω) are stochastic processes and the family ui(x) are
functions computed from data collected in the course of experi-
ments or fromdirect numerical simulations. Specifically, ui(x) s are
orthonormal fields that provide an optimal modal decomposition
in the sense that a finite collection of these modes can capture the
dominant components of the complete infinite-dimensional pro-
cess. A Galerkin projection of the original governing equations to
the low-dimensional subspace identified by the POD basis func-
tions ui(x) provides the reduced order evolution equations for
the unknown stochastic coefficients Xi(t;ω). The POD concept has
been applied to a wide range of areas such as turbulence [34,36,37,
35], and control of chemical processes [38–40]. However, themain
drawback of the PODmethod is that the basis functions are chosen
a priori and therefore may not be able to efficiently represent the
evolving responses generated by nonlinear dynamical processes.
Anothermain approach is the Polynomial Chaos (PC) expansion

pioneered by Ghanem and Spanos [41] in the context of solid me-
chanics. It is based on the original theory of Wiener on polynomial
chaos [42–44]. The stochastic field describing the system response
is treated as an element in the Hilbert space of random func-
tions and is approximated by its projection onto a finite subspace
spanned by orthogonal polynomials. Specifically, instead of impos-
ing a representation for fixed fieldsui(x) as for the PODmethod, the
stochastic processes Xi(t;ω) are spectrally represented in terms of
fixed multi-dimensional Hermite polynomials,

u(x, t;ω) =
s∑
i=1

Φi(ζ(ω))ui(x, t), ω ∈ Ω (2)
where Φi are orthogonal polynomials and ζ(ω) are given ran-
dom variables. A Galerkin projection of the governing equations to
the low-dimensional subspace defined by the Φis transforms the
original SPDE to a set of coupled deterministic PDEs for the un-
known family ui(x, t). The method has been applied to a series of
applications including fluid mechanics [45–49], structural me-
chanics [41,50,51], and wave propagation in random media [52].
Although for any arbitrary randomprocesswith finite second order
moments, the PC expansion converges in accord with Cameron–
Martin theorem [43], it has been demonstrated that the con-
vergence rate is optimal for Gaussian processes [53], while for
other types of processes the convergence ratemay be substantially
slower. A recent development by Xiu and Karniadakis [54,47] pro-
poses a generalized PC expansion where basis functions from the
Askey family of hypergeometric polynomials are used. It is shown
that suitable basis functions different from the Hermite polynomi-
als can increase substantially the rate of convergence. Depending
on the stochastic coefficients of the original SPDE and the initial
stochastic conditions, there is an optimumchoice of basis functions
through which an optimum rate of convergence can be achieved.
However, this choice must be made a priori and this can be a very
challenging task especially for non-stationary complex dynamical
systemswith large number of degrees of freedom (e.g. atmospheric
or oceanic dynamics).
The objective of the present work is to utilize a more general

expansion,

u(x, t;ω) = ū(x, t)+
s∑
i=1

Yi(t;ω)ui(x, t), ω ∈ Ω (3)

where Yi(t;ω) are stochastic processes ū(x, t) is the statistical
mean and ui(x, t) are deterministic orthonormal fields, and to
derive evolution equations for the Yi(t;ω), ū(x, t) and ui(x, t)
without making any assumptions on their form: the original SPDE
governing u(x, t;ω) is the only information utilized. Using a
new dynamical orthogonality condition for the fields ui(x, t), we
overcome the redundancy of representation (3) andderive an exact
set of evolution equations that has the form of an s-dimensional
stochastic differential equation for the randomcoefficients Yi(t;ω)
coupled with s + 1 deterministic PDEs for the fields ū(x, t)
and ui(x, t), where s is the number of modes that we retain
in representation (3). In this way, the basis that describes the
stochastic subspace is dynamically evolved and is not chosen a
priori: it adapts to the stochasticity introduced by the stochastic
initial conditions and coefficients, and evolves according to the
SPDE governing u(x, t;ω). The stochastic coefficients Yi(t;ω) are
also evolved according to dynamical equations derived directly
from the original SPDE allowing us to use any SDE numerical
scheme for their solution (e.g. particle methods). For the special
case of stochastic excitation that is delta correlated in time, i.e.
white noise, an equivalent nonlinear Fokker–Planck–Kolmogorov
equation describes the evolution of the joint probability density
function for the stochastic processes Yi(t;ω).
The derived field equations are consistent with the dynamical

orthogonality condition which also implies the preservation of
the classical orthonormality condition for the fields ui(x, t). If
additional suitable assumptions, either on the form of the fields
ū(x, t) and ui(x, t), or on the form of Yi(t;ω) are utilized, our
novel equations reproduce the reduced order equations obtained
by application of the POD or PC method, respectively. We apply
our new derived field equations to the two-dimensional stochastic
Navier–Stokes equations and compare our results with direct
Monte Carlo simulations initiated using the ESSE approach.



T.P. Sapsis, P.F.J. Lermusiaux / Physica D 238 (2009) 2347–2360 2349
2. Definitions and problem statement

Let (Ω,B,P ) be a probability space withΩ being the sample
space containing the set of elementary events ω ∈ Ω , B is the
σ -algebra associated with Ω , and P is a probability measure. Let
x ∈ D ⊆ Rn denote the spatial variable and t ∈ T the time.
Then every measurable map of the form u(x, t;ω), ω ∈ Ω will
define a random field. In applications, the most important cases
are where n = 2, 3 therefore in what follows we will assume that
x ∈ D ⊆ Rn, n = 2, 3. For a random field u(x, t;ω), ω ∈ Ω we
define the mean value operator as

ū(x, t) = Eω [u(x, t;ω)] =
∫
Ω

u(x, t;ω)dP (ω).

The set of all continuous, square integrable random fields, i.e.∫
D E

ω
[u(x, t;ω)u(x, t;ω)T]dx < ∞ for all t ∈ T (where •T

denotes the complex conjugate operation) and the bilinear form
or covariance operator

Cu(·,t;ω)v(·,s;ω)(x, y)
= Eω

[
(u(x, t;ω)− ū(x, t))T(v(y, s;ω)− v̄(y, s))

]
,

x, y ∈ D, t, s ∈ T (4)

form a Hilbert space [55,11] that will be denoted by H.
For every two elements u(x, t;ω), v(x, t;ω) ∈ Hwe define the

spatial inner product as

〈u(•, t;ω), v(•, t;ω)〉 =
∫
D
u(x, t;ω)Tv(x, t;ω)dx

where the integral on the right hand side is defined in the mean
square sense [56]. For the case where the integrands are determin-
istic the mean square integral is reduced to the classical Riemann
integral. In what followswewill use Einstein’s convection for sum-
mation, i.e.

∑
i aibi = aibi except if the limits of summation need to

be shown. A double index that is not summed-up will be denoted
as aı̄bı̄. We define the projection operatorΠ of a field u(x, t), x ∈ D
to anm-dimensional linear subspace spanned by the orthonormal
family {wj(x, t;ω)}mj=1, x ∈ D as follows

Π{wj(x,t;ω)}
m
j=1
[u(x, t;ω)]

=

m∑
j=1

wj(x, t;ω)
〈
wj(•, t;ω), u(•, t;ω)

〉
= wj(x, t;ω)

〈
wj(•, t;ω), u(•, t;ω)

〉
.

Let us now study in more detail the covariance operator when it
acts on an element u(x, t;ω), ω ∈ Ω for s = t . In this case we will
have

Cu(·,t;ω)u(·,t;ω)(x, y)
= Eω

[
(u(x, t;ω)− ū(x, t))(u(y, t;ω)− ū(y, t))T

]
,

x, y ∈ D, t ∈ T .

Then the integral operator defined by

TCφ =
∫
D
Cu(·,t)u(·,t)(x, y)φ(x, t)dx, φ ∈ L2 (5)

is a compact, self-adjoint, and positive operator in theHilbert space
of deterministic, continuous, square integrable fields, L2, i.e. all
continuous fields φ(x, t) such that 〈φ(•, t), φ(•, t)〉 <∞ [35,57].
Therefore the Karhunen–Loeve expansion [56] follows, that is, ev-
ery random field u(x, t;ω) ∈ H at a given time t can be written in
the form

u(x, t;ω) = ū(x, t)+
∞∑
i=1

Yi(t;ω)ui(x, t), ω ∈ Ω
where ui(x, t) are the eigenfunctions, and Yi(t;ω) are zero-mean,
stochastic processes with variance Eω[Y 2i (t;ω)] equal to the cor-
responding eigenvalue λ2i (t) of the eigenvalue problem∫
D
Cu(·,t)u(·,t)(x, y)ui(x, t)dx = λ2ı̄ (t)uı̄(y, t), y ∈ D. (6)

Inmost applications of interest we have λi(t) ∼ exp(−ci) for some
c > 0 which implies that all the support of the measure P is ap-
proximately contained in a compact set [35]. Therefore, every ran-
dom field u(x, t;ω) ∈ H can be approximated arbitrarily well, by
a finite series of the form

u(x, t;ω) = ū(x, t)+
s∑
i=1

Yi(t;ω)ui(x, t), ω ∈ Ω (7)

where s is a sufficiently large, non-negative integer. Based on
the above discussion we define the stochastic subspace VS =
span{ui(x, t)}sj=1 as the linear space spanned by the s eigenfields
that correspond to the s largest eigenvalues. Hence, VS defines the
appropriate subspace where the stochasticity of the random field
‘lives’ at time t , following ESSE ideas [27,58]. The goal of this work
is two-fold:

1. For fixed dimensionality s study how the stochasticity evolves
insideVS .More specificallywe seek the equations governing the
evolution of the stochastic vector {Yj(t;ω)}sj=1.

2. Study howVS evolves insideH through the variation of the basis
{uj(x, t)}sj=1.

The SPDE describing the system evolution is assumed to have the
form

∂u(x, t;ω)
∂t

= L [u(x, t;ω);ω] , x ∈ D, t ∈ T , ω ∈ Ω (8)

where L is a general (nonlinear), differential operator. Addition-
ally, the initial state of the system at t0 is described by the random
field

u(x, t0;ω) = u0(x;ω), x ∈ D, ω ∈ Ω (9)

and the boundary conditions are given by

B [u(ξ, t;ω)] = h(ξ, t;ω), ξ ∈ ∂D, ω ∈ Ω (10)

where B is a linear differential operator. For all of the above
quantities we assume that the random coefficients have statistical
moments of any order.

3. Dynamically orthogonal field equations

In this section we will use representation (7) to derive reduced
order field equations describing the mean state of the system, its
stochastic characteristics and their interactions. Clearly, represen-
tation (7) with all quantities (ū(x, t), {uj(x, t)}sj=1, {Yj(t;ω)}

s
j=1)

varying is redundant and therefore we cannot derive independent
equations from the SPDE describing their evolution. Hence, it is es-
sential to impose additional constraints in order to get awell posed
problem for the unknown quantities.
To this end we examine more carefully the source of re-

dundancy in representation (7). Specifically, we notice that the
variation of the stochastic coefficients {Yj(t;ω)}sj=1 can express ex-
clusively the evolution of uncertainty within the stochastic space
VS . On the other hand, by varying the basis {uj(x, t)}sj=1 we can ex-
press both the evolution of uncertainty within VS and also normal
to VS . Therefore, we see that the source of redundancy comes from
the evolution of uncertainty that can be described by both the vari-
ation of the stochastic coefficients and the basis. To overcome this
difficulty we need to restrict the evolution of the basis {uj(x, t)}sj=1
to be normal to the space VS since the evolution within VS can
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be described completely by the stochastic coefficients. The above
requirement can be elegantly expressed through the following
condition
dVS
dt
⊥ VS ⇔

〈
∂ui(•, t)
∂t

, uj(•, t)
〉
= 0,

i = 1, . . . , s, j = 1, . . . , s. (11)

Wewill refer to the above condition as the dynamically orthogonal
(DO) condition. Note, that the DO condition implies the preserva-
tion of orthonormality for the basis {uj(x, t)}sj=1 since

∂

∂t

〈
ui(•, t), uj(•, t)

〉
=

〈
∂ui(•, t)
∂t

, uj(•, t)
〉

+

〈
∂uj(•, t)
∂t

, ui(•, t)
〉
= 0, i = 1, . . . , s, j = 1, . . . , s.

To summarize the above discussion, in what follows we will
use the DO representation defined by Eq. (7) and the additional
properties

1. {Yj(t;ω)}sj=1 are zero-mean stochastic processes.
2. {uj(x, t)}sj=1 are deterministic fields satisfying the DO condition
(11) which are initially orthonormal, i.e. 〈ui(•, t0), uj(•, t0)〉 =
δij.

As it is proven in the following theorem, the DO expansion re-
sults in a set of independent, explicit equations for all the unknown
quantities. In particular, using the DO expansion we reformulate
the original SPDE to an s-dimensional stochastic differential equa-
tion for the random coefficients Yi(t;ω) coupled with s+ 1 deter-
ministic PDEs for the fields ū(x, t) and ui(x, t).

Theorem 1 (DO Evolution Equations). Under the assumptions of
the DO representation the original SPDE (8)–(10) is reduced to the
following system of equations

dYi(t;ω)
dt

= 〈L [u(•, t;ω);ω]

− Eω [L [u(•, t;ω);ω]] , ui(•, t)〉 , (12)

∂ ū(x, t)
∂t

= Eω [L [u(x, t;ω);ω]] , (13)

∂ui(x, t)
∂t

= ΠV⊥S

[
Eω
[
L [u(x, t;ω);ω] Yj(t;ω)

]]
C−1Yi(t)Yj(t) (14)

whereΠV⊥S [F(x)] = F(x)−ΠVS [F(x)] = F(x)− 〈F(•), uk(•, t)〉uk
(x, t) and CYi(t)Yj(t) = E

ω
[Yi(t;ω)Yj(t;ω)]. The associated boundary

conditions have the form

B [ū(ξ, t;ω)] |ξ∈∂D = Eω [h(ξ, t;ω)]

B [ui(ξ, t)] |ξ∈∂D = Eω
[
Yj(t;ω)h(ξ, t;ω)

]
C−1Yi(t)Yj(t)

and the initial conditions are given by

Yi(t0;ω) = 〈u0(•;ω)− ū0(•), ui0(•)〉
ū(x, t0) = ū0(•) ≡ Eω [u0(x;ω)]
ui(x, t0) = ui0(x)

for all i = 1, . . . , s, where ui0(x) are the eigenfields of the correlation
operator Cu(·,t0)u(·,t0) defined by the eigenvalue problem (6).

Proof. First we insert the DO representation to the evolution
equation (8). We obtain

∂ ū(x, t)
∂t

+
dYi(t;ω)
dt

ui(x, t)+ Yi(t;ω)
∂ui(x, t)
∂t

= L [u(x, t;ω);ω] . (15)
By applying the mean value operator we obtain the second equa-
tion of the theorem (Eq. (13)), i.e. an evolution equation for the
mean part of the representation.
By considering the inner product of the evolution equation (15)

with each of the fields {uj(x, t)}sj=1 we have〈
∂ ū(•, t)
∂t

, uj(•, t)
〉
+
dYi(t;ω)
dt

〈
ui(•, t), uj(•, t)

〉
+Yi(t;ω)

〈
∂ui(•, t)
∂t

, uj(•, t)
〉
=
〈
L [u(x, t;ω);ω] , uj(•, t)

〉
.

Now, the second term on the left hand side vanishes because of or-
thonormality except one term for which i = j. Moreover, the DO
condition implies that the third term vanishes completely. There-
fore we have the family of s stochastic differential equations

dYj(t;ω)
dt

+

〈
∂ ū(•, t)
∂t

, uj(•, t)
〉
=
〈
L [u(•, t;ω);ω] , uj(•, t)

〉
,

j = 1, . . . , s.

Note that by using (13) or by applying the mean value operator to
the above equation, we obtain〈
∂ ū(•, t)
∂t

, uj(•, t)
〉
= Eω

[〈
L [u(•, t;ω);ω] , uj(•, t)

〉]
,

j = 1, . . . , s.

The quantity
〈
∂ ū(•,t)
∂t , uj(•, t)

〉
expresses the variation of ū towards

directions of the stochastic subspace VS . Hence, the equation for
Y(t;ω)will take the final form (12).
As a next step, we multiply equation (15) with Yj(t;ω) and ap-

ply the mean value operator to get

Eω
[
dYi(t;ω)
dt

Yj(t;ω)
]
ui(x, t)+ Eω

[
Yi(t;ω)Yj(t;ω)

] ∂ui(x, t)
∂t

= Eω
[
L [u(x, t;ω);ω] Yj(t;ω)

]
which can be written as

CYi(t)Yj(t)
∂ui(x, t)
∂t

+ C dYi(t)
dt Yj(t)

ui(x, t)

= Eω
[
L [u(x, t;ω);ω] Yj(t;ω)

]
(16)

where CYi(t)Yj(t) = E
ω
[Yi(t;ω)Yj(t;ω)]. By considering the inner

product of the last equation with the field uk(x, t), and using DO
condition, we obtain an exact expression for C dYk(t)

dt Yj(t)

C dYk(t)
dt Yj(t)

= Eω
[
〈L [u(x, t;ω);ω] , uk(•, t)〉 Yj(t;ω)

]
. (17)

Note that this result (17) can also be obtained from the definition
of C dYk(t)

dt Yj(t)
and from Eq. (12). Now, inserting the last expression

to Eq. (16) will result in the equation

CYi(t)Yj(t)
∂ui(x, t)
∂t

= Eω
[
L [u(x, t;ω);ω] Yj(t;ω)

]
−ΠVS

[
Eω
[
L [u(x, t;ω);ω] Yj(t;ω)

]]
= ΠV⊥S

[
Eω
[
L [u(x, t;ω);ω] Yj(t;ω)

]]
where

ΠV⊥S
[F(x)] = F(x)− 〈F(•), uk(•, t)〉 uk(x, t).

Moreover, since CYi(t)Yj(t) is positive-definite it can always be in-
verted and therefore we obtain the final expression (14) for the
evolution of the fields ui(x, t).
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Finally, by applying the mean value operator on Eq. (10) for
x ∈ ∂D we obtain the boundary condition for the evolution of the
mean field

B [ū(ξ, t;ω)] |ξ∈∂D = Eω [h(ξ, t;ω)] .

Additionally, bymultiplying Eq. (10)with Yj(t;ω) and applying the
mean value operator we obtain for x ∈ ∂D

Eω
[
Yj(t;ω)h(ξ, t;ω)

]
= CYi(t)Yj(t)B [ui(ξ, t)] |ξ∈∂D.

Therefore,

B [ui(ξ, t)] |ξ∈∂D = Eω
[
Yj(t;ω)h(ξ, t;ω)

]
C−1Yi(t)Yj(t).

The initial conditions for the quantities involved are found by
approximating the initial field u0(x;ω) by a truncated Karhunen–
Loeve expansion containing s terms. Therefore, the initial con-
ditions ui0(x) for the fields ui(x, t) will be the s most energetic
eigenfields of the correlation operator Cu(·,t0)u(·,t0) defined by the
eigenvalue problem (6)∫
D
Cu(·,t0)u(·,t0)(x, y)ui0(x)dx = λ

2
ı̄ uı̄0(y), y ∈ D.

The initial conditions for the stochastic coefficients Yi(t;ω)will be
given by the projection of the fieldu0(x;ω)−ū0(x) to the orthonor-
mal eigenfields ui0(x) as follows

Yi(t0;ω) = 〈u0(•;ω)− ū0(•), ui0(•)〉 ,

and the initial condition for the mean field will be given by ū(x, t0)
= ū0(x) ≡ Eω[u0(x;ω)]. �

As it can be easily verified the evolution equations derived
above are consistent with the DO condition that was initially as-
sumed. Also, the initialization procedure for our DO field equations
follows the multivariate ESSE approach, e.g. [58,59].
It should be emphasized that the knowledge of the full set

of quantities associated with the DO expansion, i.e. {Yj(t;ω)}sj=1,
ū(x, t), and ui(x, t) can lead, through simple random variable tran-
sformations [33], to analytic expressions of any statistical quantity
of interest (e.g. pdfs of velocity field at particular positions of the
domain, spectral representations of the stochasticity etc.) in terms
of these DO expansion quantities.

3.1. The case of independent increment excitation (white noise)

A special class of SPDE of great importance is the case where
the operator L can be linearly split into a deterministic part and
a stochastic part having the form of derivative of an independent
increment process [60], e.g. Brownian motion or Poisson process.
More specifically we consider the special case of a system excited
by an independent increment (with respect to time) stochastic
process and having deterministic boundary conditions, described
by the evolution equation

∂u(x, t;ω)
∂t

= D [u(x, t;ω)]+
R∑
r=1

Φr(x, t)
dWr(t;ω)
dt

,

x ∈ D, t ∈ T , ω ∈ Ω (18)
u(x, t0;ω) = u0(x;ω), x ∈ D, ω ∈ Ω
B [u(ξ, t;ω)] = hD(ξ, t), ξ ∈ ∂D, ω ∈ Ω

whereD is a deterministic, differential operator, hD(ξ, t) is a deter-
ministic quantity defining the boundary conditions, {Φr(x, t)}Rr=1
are deterministic, sufficiently smooth fields, and {Wr(t;ω)}Rr=1 are
taken for simplicity to be independent Brownian motions (altho-
ugh the proof follows exactly the same steps for general indepen-
dent increment processes). In this case an alternative description
of the stochasticity inside VS , can be given in terms of the proba-
bility density function fY(y1, y2, . . . , ys, t) for the stochastic vector
{Yj(t;ω)}sj=1. For simplicity in what follows we will also use the
following notation

D [U(x, t), Y(t;ω)] ≡ D

[
ū(x, t)+

s∑
i=1

Yi(t;ω)ui(x, t)

]
= D [u(x, t;ω)]

with U(x, t) referring to the s + 1 fields ū(x, t), {uj(x, t)}sj=1. We
then obtain the following result.

Corollary 2. Under the assumption of theDO representation the SPDE
(18) is reduced to the following system of equations

∂ fY
∂t
= −

∂

∂yj

[
fY

〈
D [U(•, t), y]

−

∫
Rs
fY(υ, t)D [U(•, t),υ] dυ, ui(•, t)

〉]
+
1
2

∂2

∂yi∂yj

[
fYQij(t)

]
(19)

∂ ū(x, t)
∂t

=

∫
Rs
fY(υ, t)D [U(x, t),υ] dυ, (20)

∂ui(x, t)
∂t

= ΠV⊥S

[∫
Rs
υjfY(υ, t)D [U(x, t),υ] dυ

]
C−1Yi(t)Yj(t) (21)

whereQij(t) = 〈Φr(•, t), ui(•, t)〉〈Φr(•, t), uj(•, t)〉 andCYi(t)Yj(t) =∫
Rs υiυjfY(υ, t)dυ. The associated boundary conditions have the form

B [ū(ξ, t;ω)] |ξ∈∂D = hD(ξ, t)
B [ui(ξ, t)] |ξ∈∂D = 0

and the initial conditions are given by

fY(y, t0) = fY0(y)
ū(x, t0) = Eω [u0(x;ω)]
ui(x, t0) = ui0(x)

for all i = 1, . . . , s, where ui0(x) are defined in Theorem 1 and fY0(y)
is the probability density function associated with the random vector
Yi(t0;ω) = 〈u0(•;ω)− ū0(•), ui0(•)〉.

Proof. By using the special form of the SPDE (18) and the zero-
mean property of the Brownian motion we obtain from Eq. (12)

dYi(t;ω)
dt

= 〈D [U(x, t), Y(t;ω)]

− Eω [D [U(x, t), Y(t;ω)]] , ui(•, t)〉

+ 〈Φr(•, t), ui(•, t)〉
dWr(t;ω)
dt

.

This last equation is an Ito stochastic differential equation and can
be written equivalently as a transport equation for the probability
density function fY(y1, y2, . . . , ys, t)

∂ fY
∂t
+

∂

∂yj
[fY {〈D [U(•, t), y]− Eω [D [U(•, t), y]] , ui(•, t)〉}]

=
1
2

∂2

∂yi∂yj

[
fY 〈Φr(•, t), ui(•, t)〉

〈
Φr(•, t), uj(•, t)

〉]
. (22)

Note, that

Eω [D [U(x, t), Y(t;ω)]] =
∫

Rs
fY(υ, t)D [U(x, t),υ] dυ
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and hence Eq. (19) follows. Equation for the mean field follows
directly from the corresponding equation (13) and the zero-mean
property of the Brownian motion. Finally, using Eq. (14) we obtain

∂ui(x, t)
∂t

= ΠV⊥S

[
Eω
[
D [u(x, t;ω)] Yj(t;ω)

]]
C−1Yi(t)Yj(t)

+ΠV⊥S

[
〈Φr(•, t), ui(•, t)〉 Eω

[
dWr(t;ω)
dt

Yj(t;ω)
]]
C−1Yi(t)Yj(t).

The second term on the right hand side vanishes due to the non-
anticipative property of Brownian motion [11]. Moreover,

Eω
[
D [u(x, t;ω)] Yj(t;ω)

]
=

∫
Rs
υjfY(υ, t)D [U(x, t),υ] dυ.

Additionally, for the boundary conditions, we obtain from
Theorem 1

B [ui(ξ, t)] |ξ∈∂D = Eω
[
Yj(t;ω)hD(ξ, t)

]
C−1Yi(t)Yj(t)

= hD(ξ, t)Eω
[
Yj(t;ω)

]
C−1Yi(t)Yj(t) = 0.

Therefore, Eq. (21) follows. Finally the initial conditions are defined
as in Theorem 1with the stochastic vector Yi(t0;ω) = 〈u0(•;ω)−
ū0(•), ui0(•)〉 described now by the associated probability density
function fY0(y). �

Note that a transport equation for the probability density func-
tion can also be obtained for the case of general time correlation
structure for the excitation using recent results for stochastic dy-
namical systems [61,62].

4. Consistency with existing methodologies

The derivation of our new dynamically orthogonal field Eqs.
(12)–(14) was based exclusively on the representation of the solu-
tion by the DO expansion. In what follows, we show that by impos-
ing additional restrictions on the representation, either those of the
PC or the POD expansion, we recover the set of equations that are
obtained for each of these expansions. Therefore, the DO field Eqs.
(12)–(14) can be considered as a general methodology that unifies
two of the most important and widely used methods for evolving
uncertainty in stochastic continuous systems governed by a SPDE.

4.1. Generalized polynomial chaos expansion

In the generalized PC method, introduced by Xiu and Karni-
adakis [54] the stochastic processes {Yj(t;ω)}sj=1 are chosen a pri-
ori and often fixed in time, based on the statistical characteristics
of the system input process. Specifically, the stochastic processes
are chosen to have the statistically time-independent form

Yj(t;ω) = Φj(ζ(ω)) (23)

where Φj are orthogonal polynomials from the Askey scheme and
ζ(ω) are given random variables [54]. In this case, the following
orthogonality relation in the random space holds between the
stochastic coefficients

Eω
[
Φi(ζ(ω))Φj(ζ(ω))

]
= Eω

[
Φi(ζ(ω))

2] δij.
The reduced order PC equations (e.g. [46,47,63,48,64]) are usu-
ally derived by substituting a representation as (7) but with the
stochastic coefficients given by (23) to the SPDE (8) and then pro-
jecting it to the stochastic orthogonal basis functionsΦj(ζ(ω)) us-
ing the inner product. Following these steps we obtain

Eω
[
Φi(ζ(ω))

2] ∂ui(x, t;ω)
∂t

= Eω [L [u(x, t;ω);ω]Φi(ζ(ω))] . (24)
To now show that the DO expansion can reduce to the PC ex-
pansion, we start from the DO field Eqs. (12)–(14) but we restrict
them with (23). Then the equation for the stochastic coefficients
{Yj(t;ω)}sj=1 is not used since those are chosen a priori in a classic
PC equation. Then, our equation for the mean field (13) provides
directly the equation in the set (24) that corresponds to Φi(ζ(ω))
being the constant polynomial. Finally, to obtain the remaining
equations in (24), we start with the third of the DO field equations
(14) in the form

CYi(t)Yj(t)
∂ui(x, t)
∂t

= Eω
[
L [u(x, t;ω);ω] Yj(t;ω)

]
−ΠVS

[
Eω
[
L [u(x, t;ω);ω] Yj(t;ω)

]]
. (25)

But, from (17), we have Eω[〈L[u(x, t;ω);ω], uk(•, t)〉Yj(t;ω)] =
C dYk(t)

dt Yj(t)
= 0 since the stochastic characteristics of Φi(ζ(ω)) do

not changewith time. Therefore, we haveΠVS [E
ω
[L[u(x, t;ω);ω]

Yj(t;ω)]] = 0 in (25). Hence, Eq. (25) and the mean equation (13)
reduce to the family of PC equations (24).

4.2. Proper orthogonal decomposition

The PODmethoduses a priori chosen fields {uj(x)}sj=1, generated
either from an ensemble of experiments or from direct numerical
simulations [35] and provides equations either for the stochastic
or the deterministic coefficients {Yj(t;ω)}sj=1. In what follows we
show how our DO equations reduce to the standard POD method
(given the standard POD assumptions) for the stochastic case since
the deterministic equations follow as a special case.
In a standard POD method, one chooses an expansion having

the form

u(x, t;ω) =
s∑
i=1

Xi(t;ω)ui(x) (26)

where {uj(x)}sj=1 are fixed, orthonormal fields and {Xj(t;ω)}
s
j=1 are

stochastic processes (in general with non-zeromean). The reduced
order POD evolutions equations are then usually obtained by
Galerkin projection of the original SPDE (8) onto the orthonormal
fields uj(x). In this way we obtain the set of equations

dXj(t;ω)
dt

=
〈
L [u(x, t;ω);ω] , uj(x, t)

〉
. (27)

To now show that theDOexpansion can reduce to the PODmethod,
we start from Theorem 1 and the DO field equations butwe restrict
themwith (26).We consider just Eqs. (12) and (13) since {uj(x)}sj=1
have already be imposed from the PODmethod.Moreover, we note
that the coefficients {Xj(t;ω)}sj=1 of the PODmethod are connected
to the stochastic coefficients {Yj(t;ω)}sj=1 of Theorem1 through the
relation

Xj(t;ω) = Yj(t;ω)+
〈
ū(x, t), uj(x)

〉
.

Then, by differentiating Xj(t;ω) and using Eqs. (12) and (13) we
recover Eq. (27)

dXj(t;ω)
dt

=
dYj(t;ω)
dt

+

〈
∂ ū(x, t)
∂t

, uj(x, t)
〉

=
〈
L [u(•, t;ω);ω]− Eω [L [u(•, t;ω);ω]] , uj(•, t)

〉
+
〈
Eω [L [u(x, t;ω);ω]] , uj(x, t)

〉
=
〈
L [u(•, t;ω);ω] , uj(•, t)

〉
.
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5. Dynamically orthogonal field equations for Navier–Stokes

In this section we illustrate how the derived DO field equations
can be used for the solution of the stochastic, two-dimensional,
Navier–Stokes equations. Inwhat followswe consider incompress-
ible flows in two different situations: a flow in a cavity and a
flow past a circular cylinder with deterministic boundary condi-
tions and the stochasticity introduced exclusively through the ini-
tial conditions of the problem.

5.1. Formulation of the field equations

We denote with u(x, t;ω) = (u(x, t;ω), v(x, t;ω))T and
p(x, t;ω) the random velocity field and the pressure field re-
spectively. For two-dimensional Navier–Stokes flow the governing
equations have the form

∂u
∂t
+
∂p
∂x
=
1
Re
1u−

∂(u2)
∂x
−
∂(uv)
∂y

∂v

∂t
+
∂p
∂y
=
1
Re
1v −

∂(uv)
∂x
−
∂(v2)

∂y
∂u
∂x
+
∂v

∂y
= 0

B [u|∂D] = hD(ξ, t), ξ ∈ ∂D

where B is the linear operator representing the boundary condi-
tions. Using representation (7) for the random field we will have(
u(x, t;ω)
v(x, t;ω)

)
=

(
ū(x, t)
v̄(x, t)

)
+

s∑
i=1

Yi(t;ω)
(
ui(x, t)
vi(x, t)

)
.

Moreover, the inner product will here have the form

〈u1(•, t;ω),u2(•, t;ω)〉 =
∫
D
u1(x, t;ω)u2(x, t;ω)dx

+

∫
D
v1(x, t;ω)v2(x, t;ω)dx.

Inserting the above representation in the continuity equation we
obtain

∇.ū(x, t)+
s∑
i=1

Yi(t;ω)∇ · ui(x, t) = 0.

But since Yi(t;ω) is random the above equation has the equivalent
form

∇.ū(x, t) = 0 (28a)
∇.ui(x, t) = 0 i = 1, . . . , s. (28b)

Then using the DO representation, we obtain the form of the evo-
lution operatorL

Lu [u(x, t;ω);ω] = −
∂p0
∂x
+ F0 + Yi(t;ω)

[
−
∂pi
∂x
+ Fi

]
− Yi(t;ω)Yj(t;ω)

[
−
∂pij
∂x
+ Fij

]
Lv [u(x, t;ω);ω] = −

∂p0
∂y
+ G0 + Yi(t;ω)

[
−
∂pi
∂y
+ Gi

]
− Yi(t;ω)Yj(t;ω)

[
−
∂pij
∂y
+ Gij

]
where the definition of the fields on the right hand side is given in
Appendix A.
5.2. Stochastic initial conditions

The initial conditions are assumed to consist of a mean field
ū0(x) that will be described later for every particular flow, and
a stochastic part having the form

∑s
i=1 Yi0(ω)ui0(x) where the

random variables Yi0(ω) are zero-mean, independent Gaussian
and the fields ui0(x) are taken to be the eigenfields of a given
correlation operator C(x, y) having the form

C(x, y) =M(x, y)C(r)

where r is the Euclidean distance between the points (x, y), and
M(x, y) is a mollifier function which takes unit values away from
the solid boundaries and vanishes smoothly close to them. By
writing the correlation operator in this form we assure that initial
states are consistent with the deterministic boundary conditions.
In what follows we assume that C(r) has the special form [65]

C(r) = (1+ br + b2r2/3)e−br

where the constant b is taken to be equal to L−1, with L being
a characteristic length of the flow. The variance of the random
variables is chosen based on the energy levels of the mean field
so that it is comparable or larger in order to illustrate the potential
of the method for larger energy stochastic perturbations.

5.3. Numerical solution of the evolution equations

The numerical discretization of the DO field equations can
be performed using any method suitable for the deterministic
Navier–Stokes equations. Here, for simplicity we employ a stag-
gered grid combined with a donor-cell discretization scheme for
the spatial derivatives. For the time discretization, we used Euler’s
method resulting in an explicit scheme for the velocities and an
implicit scheme for the pressure (the full scheme is described in
detail in [66]).
The numerical solution of the SDE for the processes Yi(t;ω)was

performed using a particlemethod [21]with 5×103 particles. Note
that since the SDE has s dimensions (with s = 5 in the applications
shown below) the computational cost for the evolution of this SDE
is very small compared to the overall computational cost involving
the Navier–Stokes-based equations for the mean and s basis fields.
Moreover, the calculation of all field quantities that involve the
mean value operator Eω[•] in Eqs. (13) and (14) can be done in
terms of statistical moments of the stochastic process Yi(t;ω)
when we use the expressions for the evolution operator derived in
the Appendix A and the linearity of themean value operator Eω[•].
For the Navier–Stokes system the equation for the mean field (Eq.
(13)) requires only the computation of second order moments of
Yi(t;ω) while the calculation of the rhs for Eq. (14) requires also
the third order moments of Yi(t;ω).

5.4. Application results

In this section we present the results of the DO field equations
applied to numerical simulations of two types of flows described
by the Navier–Stokes equations. The stochasticity is introduced in
both applications through the initial conditionswhichhere also de-
fine the dimensionality s of the finite expansion (7) used in the DO
equations. In the first application, we consider a lid driven cavity
flow in a square domain with deterministic boundary conditions.
As a second application, we simulate a two-dimensional flow past
a circular cylinder with deterministic inflow velocity.

5.4.1. Cavity flow
As a first applicationwe simulate a driven cavity flow in a square

domain. The physical configuration (Fig. 1) consists of a square
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Fig. 1. Driven cavity flow, problem configuration.

container filled with a fluid. The lid of the contained moves at a
given, constant velocity, thereby setting the fluid in motion. No-
slip conditions are imposed on all four segments of the boundary
with the exception of the upper boundary, alongwhich the velocity
u in the x-direction is set equal to the given lid velocity ub to
simulate the moving lid. The length of each side is L = 1 and the
Reynolds number of the flow is taken to be Re = 1000.
For the stochastic computation the lid velocity is taken to be

ub = 1.5while in the DO expansion (7) we retain 5modeswhich is
equal to the stochastic dimension of the initial conditions. The flow
fields associated with the initial conditions u0(x;ω) are shown in
Fig. 2 in terms of the streamfunction.
By evolving all parameters of the system using the DO field

equations we compute the complete five-dimensional probabilis-
tic structure of the stochasticity inside VS . In Fig. 3 we show the
evolution of the principal variances σ 2i (t), i = 1, . . . , 5 which
are the eigenvalues of the correlation operator CYi(t)Yj(t) (blue solid
1 2 3 4 5 6 7
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Fig. 3. Evolution of principal variances σ 2i (t), i = 1, . . . , 5 (blue curves) andmean
field energy (red curve) for the flow in a cavity. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

curves). They provide a direct measure of how the stochastic en-
ergy evolves with time. The red solid curve is associated with the
deterministic kinetic energy of the mean flow field, i.e. the quan-
tity 〈ū(•, t), ū(•, t)〉. We observe that the stochastic energy de-
cays almostmonotonically after some initial transient interactions,
while the energy of the mean field slowly grows towards a steady
limit. This is an expected behavior if we consider the fact that the
deterministic cavity flow possess a stable attractor which is char-
acterized by a steady velocity field. Therefore, in the absence of
external stochastic excitation it is fully expected to have con-
vergence of the system to this deterministic, one-dimensional
attractor. The mean fields ū(x, t) and orthonormal basis fields
ui(x, t), i = 1, . . . , 5 are shown in Figs. 4 and 5 for two different
time instances both in terms of the streamfunction and vorticity.
For the same time instances we present three out of the five two-
dimensional marginals associated with the stochastic processes
{Yj(t;ω)}sj=1.
Fig. 2. Initial conditions for the mean and the basis of the stochastic subspace VS in terms of the field streamfunction.
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The principal variances σ 2i (t), i = 1, . . . , 5 (eigenvalues of
CYi(t)Yj(t)) (blue solid curves) and the kinetic energy of the mean
flow field (red solid curve) are shown in Fig. 9. In this case, we find
a more complex evolution of the stochastic energy characterized
by oscillations and non-monotonic behavior. The evolution of the
kinetic energy associatedwith themean field is alsomore complex.
Themean fields ū(x, t) andorthonormal basis fieldsui(x, t), i =

1, . . . , 5 are shown in Figs. 10 and 11 for two different time in-
stances in terms of the streamfunction. For the same time instances
we also present four out of the five two-dimensional marginals as-
sociated with the stochastic processes {Yj(t;ω)}sj=1. As we can ob-
serve, the basis fieldsui(x, t) aremainly distorted at locations close
to the solid boundaries indicating that the main interaction of the
stochastic subspace VS and the mean flow is taking place close to
these locations and especially the circular obstacle. This behavior
has also been reported in previous work based on generalized PC
method [47]. Larger interactions also occur where the mean vor-
ticity is larger and where meanders and eddies form downstream.
Finally in Fig. 12 we compare the mean streamfunction

computed using the presented method with the one obtained by
Fig. 4. Mean field and basis of the stochastic subspace VS in terms of the streamfunction and vorticity field; two-dimensional marginals of the five-dimensional joint pdf
f (y, t) at time t = 2.
Finally, in Fig. 6 we compare the mean streamfunction com-
puted using the 5-modes DO method with the one obtained by
Monte Carlo simulation initialized with the ESSEmethodology and
using 250 and 500 samples. We observe that as we increase the
number of samples used for the Monte Carlo simulation we obtain
better agreement with the DO mean estimate.

5.4.2. Flow past a circular disk
Here we consider the flow past a disk immersed in a channel.

The inflow velocity at the left boundary has a parabolic profilewith
a maximum value u = 1.5; the disk measures d = 1 in diameter
and is situated at a distance of 1.5 from the left and 1.6 from
the upper boundary. It is well known that for two-dimensional
flow past a circular cylinder, the first critical Reynolds number is
around Re ∼ 40, where the flow bifurcates from steady state
to periodic vortex shedding [67]. Here, we consider the case of
Re = 100. A typical realization for this case is shown in Fig. 7. The
stochastic initial conditions are described by themean field and the
stochastic subspace basis fields. They are all shown in terms of the
streamfunction in Fig. 8.












